
Embedded Systems: Week 2 - Designing Single 
Purpose Processors and Optimization 
Course Overview: Welcome to Week 2 of our "Embedded Systems" course, where we 
delve into the intricate art and science of Designing Single Purpose Processors (SPPs) 
and their Optimization. This module is meticulously crafted to transform your 
understanding of digital hardware design, guiding you from high-level algorithmic concepts to 
low-level gate-level implementations. You will gain a profound appreciation for why SPPs are 
indispensable in modern embedded systems, offering unparalleled efficiency for specialized 
tasks. We will systematically explore the entire design flow, from translating algorithms into 
the powerful Finite State Machine with Datapath (FSMD) model, to meticulously crafting the 
controller and datapath, and finally, applying sophisticated optimization techniques to 
achieve peak performance, minimal power consumption, and compact physical size. 
Prepare for an immersive journey into the heart of custom hardware acceleration. 

Learning Objectives: Upon successful completion of this rigorous module, you will possess 
the ability to: 

●​ Critically evaluate the architectural paradigms of General Purpose Processors 
(GPPs) versus Single-Purpose Processors (SPPs), discerning their respective 
strengths, weaknesses, and optimal application domains within embedded systems. 

●​ Proficiently translate complex algorithms into a structured Finite State Machine 
with Datapath (FSMD) representation, capturing both the control flow and data 
manipulation aspects of computational tasks. 

●​ Architect and implement the distinct yet interconnected components of an SPP: the 
controller (sequencing and decision-making unit) and the datapath (data processing 
and storage unit), using sound digital design principles. 

●​ Demonstrate mastery in applying both combinational and sequential logic 
design methodologies to realize efficient and correct hardware for processor 
implementation. 

●​ Strategically identify and apply a diverse array of optimization techniques at 
various levels of design abstraction – from algorithmic enhancements to gate-level 
refinements – targeting critical metrics such as speed, area, and power. 

●​ Conduct insightful trade-off analyses among competing design metrics (e.g., 
performance vs. power vs. area vs. NRE cost), enabling judicious decision-making 
for real-world embedded system design challenges. 

●​ Develop a foundational understanding of low-power design principles essential for 
energy-efficient embedded solutions. 

 

Module 2.1: Introduction to Single-Purpose Processors 

This foundational section establishes the necessity and unique value proposition of 
single-purpose processors in the embedded landscape. We will meticulously compare them 



with general-purpose processors, highlighting the architectural philosophies and 
performance characteristics that differentiate these two fundamental computing paradigms. 

●​ 2.1.1 General Purpose Processors vs. Single-Purpose Processors: A 
Comparative Analysis 

○​ General Purpose Processors (GPPs): The Programmable Workhorses 
■​ Definition and Architecture: A GPP is a microprocessor designed to 

execute a broad range of instructions, allowing it to perform diverse 
tasks merely by loading different software programs. Its architecture 
typically includes: 

■​ Central Processing Unit (CPU): Comprising an Arithmetic 
Logic Unit (ALU) for computations, control unit for instruction 
decoding and execution sequencing, and registers for 
temporary data storage. 

■​ Memory Hierarchy: Cache memory (L1, L2, L3) for speed, 
main memory (RAM) for active programs and data, and 
secondary storage (SSD/HDD) for persistent data. 

■​ Input/Output (I/O) Interfaces: For communication with 
peripherals. 

■​ Bus Structures: Data bus, address bus, control bus for 
internal communication. 

■​ Key Characteristics: 
■​ Programmability/Flexibility: Its primary strength. A single 

hardware unit can perform countless functions, from word 
processing to complex simulations, by changing its software. 

■​ Instruction Set Architecture (ISA): Defines the set of 
instructions (e.g., ADD, SUB, MOV, JUMP) that the processor 
understands and can execute. GPPs have rich and often 
complex ISAs (RISC like ARM, MIPS; CISC like x86). 

■​ Fetch-Decode-Execute Cycle: The fundamental operational 
loop. Instructions are fetched from memory, decoded, 
operands are fetched, the operation is executed, and results 
are written back. This cycle introduces inherent overhead. 

■​ Typical Applications: Desktop computers, laptops, 
smartphones, servers, embedded systems requiring high 
flexibility (e.g., infotainment systems, advanced robotics 
controllers). 

■​ Advantages of GPPs: High flexibility, relatively low NRE cost (as the 
hardware is off-the-shelf), faster time-to-market for many applications 
(just write software). 

■​ Disadvantages of GPPs: Lower performance for highly specialized 
tasks compared to custom hardware, higher power consumption for 
the same task (due to general-purpose overhead), larger physical 
footprint. 

○​ Single-Purpose Processors (SPPs): The Dedicated Specialists 
■​ Definition and Architecture: An SPP (also known as a custom logic 

circuit, ASIC - Application-Specific Integrated Circuit, or dedicated 
hardware accelerator) is a digital circuit meticulously designed and 



optimized to perform one specific computational task or algorithm 
very efficiently. Its architecture is "hardwired" directly to the problem. 

■​ Key Characteristics: 
■​ Fixed Functionality: Its logic gates are arranged to directly 

implement a particular algorithm. No instruction set or program 
memory is typically involved in the same way as a GPP. 

■​ Parallelism: Can exploit inherent parallelism in an algorithm 
by performing multiple operations simultaneously, leading to 
higher throughput and lower latency. 

■​ Optimized Data Flow: Data paths are designed precisely for 
the required operations, minimizing unnecessary routing or 
multiplexing. 

■​ No Instruction Overhead: Lacks the fetch, decode, and 
instruction pipeline overhead of GPPs, leading to fewer clock 
cycles per operation. 

■​ Typical Applications: Video encoding/decoding (H.264, 
H.265 codecs), audio processing (MP3, AAC codecs), digital 
signal processing (DSP) filters, image processing units (GPUs, 
dedicated image signal processors), encryption/decryption 
accelerators, motor controllers, specialized industrial control 
systems, neural network accelerators (NPUs). 

■​ Advantages of SPPs: Highest possible performance for the specific 
task, smallest physical size, lowest power consumption for the specific 
task. 

■​ Disadvantages of SPPs: Very high NRE cost, long time-to-market, 
absolutely no flexibility (modifying function requires hardware 
redesign). 

○​ The Crucial Trade-offs: A Spectrum of Design Choices The decision 
between GPPs and SPPs (or hybrids like FPGAs, which offer 
reconfigurability) hinges on a careful evaluation of the following critical design 
metrics: 

■​ Performance: SPPs usually win for specific, compute-intensive tasks 
(lower latency, higher throughput). 

■​ Size (Area): SPPs can be significantly smaller as they include only 
necessary logic. 

■​ Power Consumption: SPPs are typically more power-efficient for 
their dedicated task due to highly optimized circuits and lack of 
general-purpose overhead. 

■​ Non-Recurring Engineering (NRE) Cost: SPPs demand much 
higher upfront design, verification, and mask costs. Economically 
viable only for very high production volumes where NRE is amortized 
per unit. 

■​ Unit Cost: For extremely high volumes, the unit cost of an SPP can 
be lower than a GPP solution due to simpler final silicon. 

■​ Time-to-Market: Generally longer for SPPs due to complex hardware 
design and verification cycles. 

■​ Flexibility/Re-programmability: Extremely low for SPPs; high for 
GPPs. 



■​ Risk: Higher design risk for SPPs; bugs in hardware are costly to fix. 
●​ 2.1.2 Unpacking the Advantages of Custom Single-Purpose Processors Delving 

deeper into why SPPs are chosen for demanding embedded applications: 
○​ Superior Performance through Direct Hardware Implementation: 

■​ Elimination of Instruction Overhead: Unlike GPPs that spend 
cycles fetching, decoding, and executing generic instructions, an 
SPP's operations are "hardwired." This means operations can often 
begin immediately as data becomes available. 

■​ Exploiting Parallelism: Algorithms often have inherent parallelism 
(operations that can occur simultaneously). SPPs can be designed 
with multiple functional units working in parallel (e.g., several adders 
operating simultaneously), leading to massive speedups. GPPs 
typically achieve limited parallelism through techniques like pipelining 
or superscalar execution, but SPPs can be custom-tailored for 
maximum concurrency. 

■​ Optimized Datapaths: The data flow within an SPP is precisely 
tailored to the algorithm. There are no general-purpose buses or 
complex routing that might introduce delays. Wires are designed for 
optimal signal propagation. 

■​ Higher Clock Frequencies (Potentially): Simpler logic paths within 
SPPs can sometimes allow for higher clock frequencies compared to 
the complex logic paths in a GPP's control unit. 

○​ Exceptional Miniaturization (Smaller Size): 
■​ Reduced Logic Gates: An SPP only contains the specific logic gates 

required to implement its function. It doesn't need instruction 
decoders, large general-purpose register files, complex control units 
for arbitrary instruction sets, or large program memories. 

■​ Elimination of Unused Features: Every transistor in an integrated 
circuit (IC) occupies area. By removing all components not directly 
essential for the single purpose, SPPs can achieve remarkably 
compact footprints, crucial for space-constrained devices (e.g., smart 
cards, medical implants, tiny sensors). 

■​ Fewer Interconnections: A more streamlined design generally leads 
to fewer and shorter interconnections, further saving area and 
reducing signal propagation delays. 

○​ Unrivaled Power Efficiency: 
■​ Reduced Dynamic Power: Dynamic power consumption 

(P_dynamicproptoCcdotV2cdotfcdotalpha) is proportional to 
capacitance (C), supply voltage (V) squared, frequency (f), and 
switching activity (alpha). SPPs can optimize all these factors: 

■​ Smaller C: Fewer transistors and shorter wires mean lower 
capacitance. 

■​ Lower V: Often, SPPs can operate at lower supply voltages if 
performance requirements permit. 

■​ Lower alpha (Switching Activity): By precise control and 
clock gating (turning off clocks to idle parts), unnecessary 
switching can be minimized. 



■​ Reduced Static Power: Static power (or leakage power) is consumed 
even when the circuit is idle due to current leakage through 
transistors. Fewer transistors (smaller area) directly translates to lower 
static power. 

■​ No General-Purpose Overhead Power: A GPP will always consume 
some power for its core components, even when running a simple 
task, due to the need to maintain its general-purpose capabilities. An 
SPP avoids this inherent overhead. 

●​ 2.1.3 The Inherent Disadvantages and Design Trade-offs While powerful, SPPs 
come with significant drawbacks that limit their applicability: 

○​ Prohibitive Non-Recurring Engineering (NRE) Cost: 
■​ Custom Design Effort: Designing an SPP from scratch requires 

highly specialized hardware description languages (HDLs like VHDL 
or Verilog), sophisticated Electronic Design Automation (EDA) tools, 
and highly skilled design engineers. 

■​ Verification Complexity: Thoroughly verifying a custom hardware 
design is incredibly complex and time-consuming. Bugs found late in 
the process (after fabrication) are astronomically expensive to fix 
(requiring a "re-spin" of the chip). 

■​ Mask Costs: For fabricating an ASIC, a set of photolithographic 
masks must be produced. These masks are incredibly expensive 
(millions of dollars for advanced process nodes). This cost must be 
amortized over the total number of chips produced. 

■​ Yield Issues: The manufacturing process has inherent defects. Lower 
yields (fewer functional chips per wafer) increase the per-unit cost. 

■​ Implication: SPPs are generally only economically viable for very 
high-volume production runs (millions of units) where the NRE cost 
can be spread thin, making the per-unit cost competitive. 

○​ Extended Time-to-Market (TTM): 
■​ Long Design Cycles: The entire process—from specification, design 

(HDL coding), simulation, synthesis, place and route, to fabrication 
and testing—is significantly longer than simply writing and debugging 
software for a GPP. 

■​ Iteration Delays: If design flaws are found late, fixing them can 
involve multiple iterations of the entire flow, especially fabrication, 
adding months or even a year to the project timeline. 

■​ Implication: Not suitable for rapidly evolving markets or products with 
short shelf lives. 

○​ Absolute Lack of Flexibility: 
■​ Hardware Fixity: Once an SPP is manufactured, its functionality is 

fixed. It cannot be reprogrammed or updated with new features or 
algorithmic improvements through software. 

■​ Obsolete Design Risk: If the standard for which the SPP was 
designed changes (e.g., a new video compression codec), the entire 
hardware becomes obsolete. 

■​ Bug Fixes: Discovering a functional bug after fabrication necessitates 
a costly and time-consuming hardware redesign and re-fabrication. 



This contrasts sharply with GPPs, where most bugs can be fixed via 
software updates. 

■​ Implication: Only suitable for highly stable and well-defined 
functionalities. 

 

Module 2.2: Designing Custom Single-Purpose Processors - The FSMD 
Approach 

This section is the core of SPP design. We will systematically learn how to transform a 
high-level algorithm into the structured FSMD model, which serves as the blueprint for 
building the physical hardware. This involves breaking down the algorithm into sequential 
control steps and parallel data operations. 

●​ 2.2.1 Problem Description and Algorithmic Representation: The Starting Point 
○​ Defining the Problem: Before any design work begins, a clear, 

unambiguous, and complete specification of the problem is essential. 
What are the inputs? What are the outputs? What is the exact transformation 
or computation required? What are the performance constraints (speed, 
throughput, latency)? What are the resource constraints (area, power)? 

○​ High-Level Algorithmic Representation: Once the problem is defined, the 
first step towards hardware design is to express the solution as a high-level 
algorithm. This step is crucial because it allows us to reason about the logic 
and control flow without immediately worrying about hardware details. 

■​ Common Notations: 
■​ Pseudocode: An informal, high-level description of an 

algorithm's operating principle. It uses the structural 
conventions of programming languages but is intended for 
human reading rather than machine execution. 

■​ C/C++ Code: A common starting point for hardware design, as 
many algorithms are initially developed and verified in these 
languages. Tools exist to synthesize hardware from a subset of 
C/C++ (High-Level Synthesis - HLS). 

■​ Flowcharts: Graphical representation of an algorithm, 
showing steps as boxes of various kinds, and their order by 
connecting them with arrows. Useful for visualizing control 
flow. 

■​ Importance: This step helps in: 
■​ Clarity: Ensuring a shared understanding of the problem and 

its solution among designers. 
■​ Verification: The algorithm can be simulated and tested in 

software to ensure its correctness before committing to costly 
hardware design. 

■​ Abstraction: It allows focusing on the "what" (the logic) before 
the "how" (the hardware implementation). 



○​ Example: A Simple Finite Impulse Response (FIR) Filter Let's consider a 
simple 3-tap FIR filter, commonly used in DSP. y[n] = c0 * x[n] + c1 
* x[n-1] + c2 * x[n-2] Where: 

■​ y[n] is the current output sample. 
■​ x[n] is the current input sample. 
■​ x[n-1] and x[n-2] are previous input samples (delayed versions). 
■​ c0, c1, c2 are filter coefficients (constants). 

Pseudocode representation for a single output calculation:​
function Compute_FIR_Output(current_input_x, coeff_c0, coeff_c1, coeff_c2): 
    // Assume registers for previous inputs: X_prev1, X_prev2 
    // Shift operations (oldest input drops, current input becomes latest previous) 
    X_prev2 = X_prev1 
    X_prev1 = current_input_x 
 
    // Perform multiplications 
    term0 = coeff_c0 * current_input_x 
    term1 = coeff_c1 * X_prev1 
    term2 = coeff_c2 * X_prev2 
 
    // Perform additions 
    sum01 = term0 + term1 
    final_output = sum01 + term2 
 
    return final_output 

○​  
●​ 2.2.2 Finite State Machine with Datapath (FSMD) Model: The Blueprint The 

FSMD is the canonical model for designing synchronous digital systems, especially 
single-purpose processors. It elegantly separates the control logic (what to do and 
when) from the data processing logic (how to do it). 

○​ Introduction to FSMD: The Synergy of Control and Data 
■​ Finite State Machine (FSM) - The Controller: This is the "brain" of 

the SPP. It dictates the sequence of operations. It transitions between 
a finite number of states, each representing a distinct phase or step in 
the algorithm. Transitions are triggered by internal conditions (status 
signals from the datapath) or external inputs. In each state, the FSM 
generates control signals that orchestrate the operations within the 
datapath. 

■​ Datapath - The Data Processor: This is the "muscle" of the SPP. It 
comprises the hardware units that store and manipulate data. These 
include: 

■​ Registers: For storing variables and intermediate results. 
■​ Functional Units: Logic blocks that perform arithmetic 

(adders, multipliers, ALUs) and logical operations (AND, OR, 
XOR). 

■​ Multiplexers: For selecting data paths. 



■​ Interconnections: Wires that connect these components. 
■​ Interaction: The controller provides control signals to the datapath 

(e.g., "load register A," "enable adder," "select input 0 on mux"). The 
datapath, in turn, provides status signals (conditions) back to the 
controller (e.g., "result is zero," "overflow occurred") that influence the 
next state transition of the FSM. 

○​ Translating Algorithmic Constructs into FSMD States and Operations: 
This is the most critical step in conceptualizing your SPP. You systematically 
map each part of your algorithm to components and actions within the FSMD. 

■​ Variable Declarations: Each persistent variable in your algorithm 
(X_prev1, X_prev2 in our FIR example) will typically map to a 
dedicated register in the datapath. Inputs and outputs will also be 
associated with registers or I/O ports. 

■​ Assignment Statements (variable = expression): 
■​ These require routing data. The expression part dictates the 

functional units needed (e.g., term0 = c0 * 
current_input_x requires a multiplier). 

■​ The result of the expression needs to be written into the 
target variable's register. This means enabling the write 
operation of that register (a control signal from the FSM) and 
ensuring the correct data path is selected to its input (using a 
multiplexer, if multiple sources can write to it). 

■​ Example (FIR): X_prev2 = X_prev1 implies routing the 
output of X_prev1 register to the input of X_prev2 register, 
and asserting load_X_prev2 control signal. 

■​ Arithmetic and Logical Operations (+, -, *, /, %, AND, OR, NOT, ==, 
!=, <, >): 

■​ These directly map to functional units in the datapath. An 
ADD operation requires an adder, a * (multiply) requires a 
multiplier, == requires a comparator. 

■​ The inputs to these functional units come from registers or 
input ports; their outputs go to other functional units or 
registers. 

■​ Example (FIR): term0 = c0 * current_input_x 
requires a multiplier where one input is c0 and the other is 
current_input_x. 

■​ Conditional Statements (if-else): 
■​ These primarily affect the control flow of the FSM. 
■​ The condition (if (B != 0) in GCD) is evaluated by a 

comparator (a functional unit) in the datapath. 
■​ The result of the condition (e.g., a single bit indicating 

true/false) is fed as a status signal from the datapath to the 
controller. 



■​ The controller then uses this status signal to determine the 
next state transition. If true, go to State A; if false, go to State 
B. 

■​ Loops (for, while): 
■​ Loops are implemented by having the FSM transition back to 

an earlier state (the "loop body" state or "loop condition check" 
state) as long as the loop condition remains true. 

■​ When the loop condition becomes false, the FSM transitions 
out of the loop to the subsequent state. 

■​ Loop Counters: For for loops, an additional counter register 
and incrementer might be needed in the datapath, with its 
output fed back to the controller for loop termination checks. 

○​ Illustrative Example: FSMD for FIR Filter (simplified for one output 
calculation) Let's refine the FIR example into an FSMD. Assume data is 
W-bits wide. 

■​ Datapath Components: 
■​ Registers: X_reg (for current_input_x), X_prev1_reg, 

X_prev2_reg. 
■​ Multipliers: MUL0, MUL1, MUL2 (or a single shared multiplier). 
■​ Adders: ADD0, ADD1 (or a single shared adder). 
■​ Input ports: DATA_IN (for current_input_x), C0_IN, 

C1_IN, C2_IN. 
■​ Output port: RESULT_OUT. 
■​ Muxes: For routing data to register inputs if they can be loaded 

from multiple sources. 
■​ FSM States & Transitions: 

■​ IDLE_STATE: 
■​ Actions: Wait for start_signal. 
■​ Transitions: If start_signal is asserted, transition to 

LOAD_INPUTS_AND_SHIFT. 
■​ LOAD_INPUTS_AND_SHIFT_STATE: 

■​ Actions: 
■​ X_prev2_reg <- X_prev1_reg (Control: 

load_X_prev2, mux_X_prev2_sel = 
X_prev1_reg_out). 

■​ X_prev1_reg <- X_reg (Control: 
load_X_prev1, mux_X_prev1_sel = 
X_reg_out). 

■​ X_reg <- DATA_IN (Control: load_X_reg, 
mux_X_reg_sel = DATA_IN). 

■​ Transitions: Unconditionally transition to 
MULTIPLY_STATE. 

■​ MULTIPLY_STATE: 
■​ Actions: 



■​ term0_res_reg <- C0_IN * X_reg 
(Control: enable_MUL0, 
load_term0_res_reg). 

■​ term1_res_reg <- C1_IN * 
X_prev1_reg (Control: enable_MUL1, 
load_term1_res_reg). 

■​ term2_res_reg <- C2_IN * 
X_prev2_reg (Control: enable_MUL2, 
load_term2_res_reg). 

■​ Transitions: Unconditionally transition to 
ADD_STATE_1. 

■​ ADD_STATE_1: 
■​ Actions: 

■​ sum01_res_reg <- term0_res_reg + 
term1_res_reg (Control: enable_ADD0, 
load_sum01_res_reg). 

■​ Transitions: Unconditionally transition to 
ADD_STATE_2. 

■​ ADD_STATE_2: 
■​ Actions: 

■​ final_output_reg <- sum01_res_reg + 
term2_res_reg (Control: enable_ADD1, 
load_final_output_reg). 

■​ Assert done_signal. 
■​ Transitions: Unconditionally transition back to 

IDLE_STATE (or wait for another start_signal). 
○​ This FSMD clearly defines the sequence of operations and the required 

datapath components. 
●​ 2.2.3 Partitioning FSMD into Controller and Datapath: The Two Pillars Once the 

FSMD is conceptualized, we physically separate it into its two interdependent units. 
○​ Controller Design: The Brain of the SPP 

■​ Role and Function: The controller is a sequential circuit responsible 
for generating the necessary control signals to orchestrate the 
datapath's operations in the correct sequence. It interprets inputs 
(external controls, status signals from datapath) and current state to 
determine the next state and corresponding outputs. 

■​ Extracting Control Logic: 
■​ States: Identify all the distinct states identified in your FSMD 

(e.g., IDLE, LOAD_INPUTS, MULTIPLY, ADD1, ADD2, DONE). 
■​ Transitions: Define the conditions under which the FSM 

moves from one state to another (e.g., start_signal, 
zero_flag). 

■​ Control Signals: For each state, list all the specific control 
signals that must be asserted (set to '1') or de-asserted (set to 



'0') to make the datapath perform its intended operation in that 
cycle. These are the outputs of the controller. 

■​ Status Signals: Identify all inputs the controller needs from 
the datapath or external world to make decisions about state 
transitions. These are the inputs to the controller. 

■​ Representing the Controller as a Pure Finite State Machine 
(FSM): The controller itself is a synchronous FSM. 

■​ State Diagram: A graphical representation showing states as 
nodes and transitions as directed edges, labeled with input 
conditions and output control signals. 

■​ State Table: A tabular representation listing current state, 
inputs, next state, and outputs for all possible combinations. 

■​ Implementing the FSM: 
■​ State Register: A bank of D-type flip-flops (typically) whose 

outputs represent the current state. The number of flip-flops 
depends on the number of states (e.g., for 5 states, 3 flip-flops: 
lceillog_25rceil=3). 

■​ Next-State Logic (Combinational Logic): This is a 
combinational circuit that takes the current state (from the state 
register) and the controller inputs (status signals, external 
controls) and calculates the next state to be loaded into the 
state register at the next clock edge. This logic is derived from 
the state table. 

■​ Output Logic (Combinational Logic): This is another 
combinational circuit that takes the current state (and 
sometimes, the controller inputs, for Mealy-type FSMs) and 
generates all the necessary control signals that drive the 
datapath. This logic is also derived from the state table. 

○​ Datapath Design: The Muscles of the SPP 
■​ Role and Function: The datapath is the collection of hardware units 

that store, manipulate, and transfer data as instructed by the 
controller. It performs the actual computations. 

■​ Identifying Data Storage Elements (Registers): 
■​ Each variable in your algorithm that needs to hold a value over 

multiple clock cycles (e.g., X_reg, X_prev1_reg, 
X_prev2_reg in FIR) will be implemented as a register. A 
register is essentially a collection of D-flip-flops, all clocked 
together. 

■​ Registers typically have a load enable input (controlled by the 
FSM) that dictates when new data is written into them. 

■​ Input/Output ports are often implemented as registers (input 
registers, output registers) for synchronization and buffering. 

■​ Identifying Functional Units (Combinational Logic): 
■​ Any arithmetic or logical operation in your algorithm requires a 

dedicated hardware block. 
■​ Arithmetic Logic Units (ALUs): Versatile units that can 

perform multiple arithmetic (add, subtract, increment, 



decrement) and logical (AND, OR, NOT, XOR) operations. A 
control input selects the specific operation. 

■​ Dedicated Adders, Subtractors, Multipliers, Dividers: If 
only one specific operation is needed frequently, a dedicated 
unit might be more efficient than a full ALU. 

■​ Comparators: To check conditions like equality (A==B), 
inequality (A!=B), greater than (A>B), etc. Their outputs (e.g., 
equal_flag, greater_flag) are status signals fed back to 
the controller. 

■​ Shifters: For bit-shifting operations. 
■​ Interconnecting Components: The Plumbing for Data Flow: 

■​ Wires: The basic connections for transferring data between 
components. 

■​ Multiplexers (Muxes): Crucial for routing data. If a register or 
a functional unit can receive data from multiple sources, a 
multiplexer is placed at its input. The select lines of the 
multiplexer are control signals generated by the FSM. For 
example, mux_X_reg_sel in our FIR example would choose 
between DATA_IN or 0 if we want to clear it. 

■​ Buses: Collections of parallel wires used to transfer multi-bit 
data between multiple components. Care must be taken with 
bus arbitration if multiple sources can drive the bus. 

■​ Tri-state Buffers: Used to connect multiple outputs to a single 
bus by enabling only one output at a time. While conceptually 
simple, they are often avoided in strict synchronous logic in 
favor of multiplexers to prevent bus contention issues. 

■​ Creating Control Inputs and Outputs for the Datapath: 
■​ Control Inputs: Each datapath component that performs an 

action (e.g., a register loading data, an ALU performing an 
operation, a mux selecting an input) needs one or more control 
inputs from the FSM. These are the load_X_reg, 
enable_MUL0, mux_X_prev2_sel signals from our FIR 
example. 

■​ Status Outputs: Functional units (especially comparators) 
generate status signals that convey information about the data. 
These signals (e.g., zero_flag, overflow_flag, 
equal_flag) are fed back as inputs to the controller, 
influencing its state transitions. 

 

Module 2.3: Implementation Details of Custom Single-Purpose 
Processors 



This section provides a rigorous review of the fundamental digital logic concepts that 
underpin all hardware implementations. From the simplest gates to complex sequential 
circuits, mastering these building blocks is paramount for bringing your FSMD to life. 

●​ 2.3.1 Combinational Logic Review: The Building Blocks of Computation 
○​ Definition: Combinational logic circuits are digital circuits whose outputs are 

solely determined by their current inputs. They have no memory of past 
inputs; for a given set of inputs, the output will always be the same. 

○​ Boolean Algebra: The Mathematical Foundation: 
■​ Variables and Values: Binary variables (0 or 1, representing logic 

low/high, false/true). 
■​ Basic Operations: 

■​ AND (•): Output is 1 only if all inputs are 1. 
■​ OR (+): Output is 1 if any input is 1. 
■​ NOT (' or bar): Inverts the input. 

■​ Laws and Theorems: Commutative, Associative, Distributive laws, 
De Morgan's theorems, Absorption law, etc. These are used to 
simplify Boolean expressions. 

○​ Logic Gates: The Physical Manifestations of Boolean Operations: 
■​ AND Gate, OR Gate, NOT Gate (Inverter): The fundamental gates. 
■​ NAND Gate, NOR Gate: Universal gates, meaning any other logic 

gate or function can be implemented using only NAND gates or only 
NOR gates. 

■​ XOR Gate (Exclusive OR), XNOR Gate (Exclusive NOR): Useful for 
parity checking, comparison, and addition. 

○​ Combinational Circuit Design Methodology: 
■​ Problem Specification: Clearly define inputs and outputs. 
■​ Truth Table: Create a table listing all possible input combinations and 

the desired output for each. 
■​ Boolean Expression Derivation: Write the Boolean expression from 

the truth table (e.g., Sum of Products - SOP, Product of Sums - POS). 
■​ Simplification: 

■​ Karnaugh Maps (K-Maps): A graphical method for simplifying 
Boolean expressions with up to 5-6 variables. It facilitates 
visual identification of adjacent terms that can be combined. 

■​ Boolean Algebra Simplification: Applying Boolean laws and 
theorems algebraically to reduce the complexity of the 
expression (fewer literals, fewer terms). 

■​ Quine-McCluskey Algorithm: A systematic, tabular method 
for minimizing Boolean expressions, especially useful for more 
variables where K-Maps become unwieldy. It's often used in 
CAD tools. 

■​ Logic Diagram Implementation: Draw the circuit using logic gates 
based on the simplified expression. 

○​ Common Combinational Components (as used in Datapaths): 
■​ Multiplexers (Muxes): An N-to-1 data selector. It has N data inputs, 

lceillog_2Nrceil select inputs, and 1 output. The select inputs 



determine which data input is routed to the output. Crucial for 
implementing data routing under controller direction. 

■​ Decoders: An N-to-2N decoder. It takes an N-bit binary input and 
activates exactly one of its 2N output lines. Used for address decoding 
or selecting specific units. 

■​ Encoders: Performs the reverse of a decoder. It takes 2N input lines 
(one active at a time) and produces an N-bit binary code representing 
the active input. 

■​ Adders: 
■​ Half-Adder: Adds two single bits, producing a sum and a 

carry. 
■​ Full-Adder: Adds three single bits (two input bits and a 

carry-in), producing a sum and a carry-out. 
■​ Ripple-Carry Adder: Multiple full-adders cascaded, where the 

carry-out of one stage feeds the carry-in of the next. Simple 
but slow for large numbers due to carry propagation delay. 

■​ Carry-Lookahead Adder: A faster adder that computes 
carries in parallel, reducing propagation delay. 

■​ Comparators: Circuits that compare two binary numbers (A and B) 
and output signals indicating their relationship (e.g., A=B, A>B, A 

●​ 2.3.2 Sequential Logic Review: The Foundation of Memory and Sequencing 
○​ Definition: Sequential logic circuits are digital circuits whose outputs depend 

not only on their current inputs but also on their past inputs, effectively 
possessing "memory." They achieve this through feedback paths and memory 
elements. 

○​ Latches and Flip-Flops: The Fundamental Memory Elements: 
■​ Latches: Level-sensitive memory devices. Their output can change 

as long as the enable input is active. (e.g., SR Latch, D Latch). Often 
prone to "race conditions" and transparency issues in complex 
synchronous designs. 

■​ Flip-Flops: Edge-triggered memory devices. Their output changes 
only at a specific transition of the clock signal (rising edge or falling 
edge). This synchronized behavior is critical for stable digital systems. 

■​ D-Flip-Flop (Data Flip-Flop): Most commonly used. It stores 
the value present at its 'D' input at the clock edge. Used to 
build registers. 

■​ JK-Flip-Flop, T-Flip-Flop: Other types with different excitation 
tables, less common for general data storage but useful for 
specific counter designs. 

○​ Registers: Storing Multi-bit Data: 
■​ A register is a collection of multiple D-flip-flops, all sharing a common 

clock signal and often a common enable/load signal. An 8-bit register 
stores an 8-bit binary number. 

■​ Registers are fundamental for storing variables, intermediate results, 
and holding input/output data between clock cycles. 

○​ Shift Registers: Data Manipulation and Serial Transfer: 
■​ A register that can shift its stored data bits to the left or right at each 

clock cycle. 



■​ Applications: Serial-to-parallel conversion, parallel-to-serial 
conversion, data alignment, simple multiplication/division by powers of 
2. 

○​ Counters: Sequencing and Timing: 
■​ Sequential circuits designed to sequence through a predefined pattern 

of states, typically representing a count. 
■​ Types: Ripple counters (asynchronous), Synchronous counters (all 

flip-flops clocked simultaneously). Synchronous counters are preferred 
in SPPs for predictable timing. 

■​ Applications: Generating sequences, timing control signals, 
frequency division. 

○​ State Diagrams and State Tables: Describing FSM Behavior: 
■​ State Diagram: A directed graph where nodes represent states and 

directed edges represent transitions. Edges are labeled with input 
conditions that cause the transition and outputs generated during the 
transition (or while in the state). 

■​ State Table: A tabular representation of an FSM. It lists for each 
current state and input combination: the next state and the outputs. 
This is the direct input for synthesizing the next-state and output 
combinational logic. 

●​ 2.3.3 Detailed Example of Single-Purpose Processor Design: The GCD 
Processor Let's put all the pieces together by designing a classic example: a 
single-purpose processor that calculates the Greatest Common Divisor (GCD) of two 
8-bit numbers using Euclid's Algorithm (remainder method). 

Algorithm:​
function GCD(A, B): 
    // Inputs A, B are unsigned 8-bit integers 
    // Output is unsigned 8-bit integer 
    while B != 0: 
        remainder = A mod B 
        A = B 
        B = remainder 
    return A 

○​  
○​ Step 1: Algorithm to FSMD Conversion 

■​ Variables: 
■​ A: A_reg (8-bit register) 
■​ B: B_reg (8-bit register) 
■​ remainder: R_reg (8-bit register, temporary) 

■​ Operations: 
■​ A mod B: Requires an 8-bit Modulo Unit. 
■​ B != 0: Requires an 8-bit Comparator (to compare B with 0). 
■​ Assignments (A = B, B = remainder): Requires data 

routing and register loads. 
■​ States (Controller Perspective): 



■​ IDLE: Initial state, waiting for start_signal. Loads A_in 
and B_in into A_reg and B_reg. 

■​ LOOP_CHECK: Checks if B_reg is equal to 0. 
■​ COMPUTE_MODULO: Calculates A_reg mod B_reg and 

stores the result in R_reg. 
■​ UPDATE_REGISTERS: Updates A_reg with B_reg's value 

and B_reg with R_reg's value. 
■​ DONE: Computation finished. Sets done_signal high and 

outputs A_reg. 
○​ Step 2: Datapath Component Identification and Interconnection 

■​ Registers: 
■​ A_reg (8-bit): Stores current 'A' value. Has load_A 

enable. 
■​ B_reg (8-bit): Stores current 'B' value. Has load_B 

enable. 
■​ R_reg (8-bit): Stores the remainder. Has load_R enable. 

■​ Functional Units: 
■​ Modulo Unit (8-bit): Takes A_reg and B_reg as inputs, 

outputs A_reg mod B_reg (the remainder). 
■​ Zero Comparator (8-bit): Takes B_reg as input, outputs 

B_is_zero (1 if B_reg == 0, else 0). 
■​ Multiplexers (for register inputs): 

■​ Mux_A_in (2-to-1): Selects between A_in (initial input) 
and B_reg_out (for A = B step). Control: sel_A_mux. 

■​ Mux_B_in (2-to-1): Selects between B_in (initial input) 
and R_reg_out (for B = remainder step). Control: 
sel_B_mux. 

■​ Input/Output Ports: 
■​ A_in (8-bit), B_in (8-bit): External inputs. 
■​ start_signal (1-bit): External control to begin 

computation. 
■​ reset_signal (1-bit): External control to reset the 

system. 
■​ result_out (8-bit): Output for the final GCD. 
■​ done_signal (1-bit): Indicates computation is complete. 

■​ Interconnections: Wires connecting A_reg_out, B_reg_out to 
Modulo Unit inputs; Modulo Unit output to R_reg_in; B_reg_out to 
Zero Comparator; R_reg_out to Mux_B_in; B_reg_out to 
Mux_A_in; Mux_A_in_out to A_reg_in; Mux_B_in_out to 
B_reg_in; A_reg_out to result_out. 

○​ Step 3: Controller State Diagram Derivation 
■​ States: 

■​ S_IDLE (000): Initial state. 



■​ S_LOOP_CHECK (001): Check loop condition. 
■​ S_COMPUTE_MOD (010): Perform modulo operation. 
■​ S_UPDATE_REGS (011): Update registers. 
■​ S_DONE (100): Computation complete. 

■​ Transitions and Control Signals (Outputs of Controller): 
■​ From S_IDLE: 

■​ If start_signal == 1: 
■​ load_A = 1 (load A_in via Mux_A_in_sel 

= 0) 
■​ load_B = 1 (load B_in via Mux_B_in_sel 

= 0) 
■​ Next State = S_LOOP_CHECK 

■​ Else: Stay in S_IDLE. 
■​ From S_LOOP_CHECK: 

■​ If B_is_zero == 1 (from comparator): Next State = 
S_DONE 

■​ Else (B_is_zero == 0): Next State = 
S_COMPUTE_MOD 

■​ From S_COMPUTE_MOD: 
■​ enable_modulo_unit = 1 
■​ load_R = 1 
■​ Next State = S_UPDATE_REGS 

■​ From S_UPDATE_REGS: 
■​ load_A = 1 (Mux_A_in_sel = 1 to load 

B_reg_out) 
■​ load_B = 1 (Mux_B_in_sel = 1 to load 

R_reg_out) 
■​ Next State = S_LOOP_CHECK 

■​ From S_DONE: 
■​ done_signal = 1 
■​ If reset_signal == 1: Next State = S_IDLE 
■​ Else: Stay in S_DONE 

○​ Step 4: Generating Control Signals for the Datapath (Output Logic of 
Controller) Based on the state diagram, we derive Boolean equations for 
each control signal. Example: 

■​ load_A = (Current_State == S_IDLE AND start_signal) 
OR (Current_State == S_UPDATE_REGS) 

■​ load_B = (Current_State == S_IDLE AND start_signal) 
OR (Current_State == S_UPDATE_REGS) 

■​ sel_A_mux = (Current_State == S_UPDATE_REGS) (0 for 
A_in, 1 for B_reg_out) 



■​ sel_B_mux = (Current_State == S_UPDATE_REGS) (0 for 
B_in, 1 for R_reg_out) 

■​ enable_modulo_unit = (Current_State == 
S_COMPUTE_MOD) 

■​ load_R = (Current_State == S_COMPUTE_MOD) 
■​ done_signal = (Current_State == S_DONE) (Note: Other 

control signals like register enables for R_reg would also be derived.) 
○​ Step 5: State Encoding and Implementation of Controller Logic 

■​ State Encoding: We have 5 states, so we need lceillog_25rceil=3 
flip-flops for our state register. Let's use simple binary encoding: 

■​ S_IDLE: 000 
■​ S_LOOP_CHECK: 001 
■​ S_COMPUTE_MOD: 010 
■​ S_UPDATE_REGS: 011 
■​ S_DONE: 100 

■​ Next-State Logic: For each flip-flop (Q2, Q1, Q0), derive its 
next-state equation (D2, D1, D0) based on current state (Q2, Q1, 
Q0), start_signal, reset_signal, and B_is_zero. This will 
involve a set of complex Boolean equations. 

■​ Output Logic: Derive Boolean equations for each control signal (e.g., 
load_A, sel_A_mux) as a function of the current state and relevant 
inputs. 

■​ Hardware Implementation: These Boolean equations are then 
synthesized into actual logic gates (AND, OR, NOT, etc.) and 
connected to the 3 state flip-flops, forming the complete controller 
circuit. 

 

Module 2.4: Optimization Issues for Single-Purpose Processors 

Optimization is not an afterthought; it's an integral part of the design process for SPPs. This 
section will empower you with techniques to critically evaluate and systematically improve 
your designs across various critical metrics. 

●​ 2.4.1 Design Metrics for Embedded Systems: The Pillars of Evaluation Every 
design decision is a trade-off. Understanding these metrics is paramount for making 
intelligent design choices. 

○​ Unit Cost: 
■​ Definition: The manufacturing cost per individual embedded system. 
■​ Factors: Silicon area (chip size), packaging, testing, materials (PCB, 

components), assembly. 
■​ Optimization Goal: Reduce silicon area, use cheaper packaging, 

minimize external components. SPPs are often chosen in high-volume 
products to drive down unit cost over time due to optimized silicon. 

○​ Non-Recurring Engineering (NRE) Cost: 



■​ Definition: The one-time cost of design, verification, tooling (masks), 
and initial prototyping. 

■​ Factors: Engineer salaries, EDA tool licenses, fabrication mask set 
costs, test equipment. 

■​ Optimization Goal: Reduce design cycle time, utilize reusable IP 
(Intellectual Property), choose appropriate design methodology (e.g., 
higher-level synthesis tools can reduce NRE by abstracting details but 
may lead to less optimal hardware). 

○​ Size (Area): 
■​ Definition: The physical footprint of the silicon chip and the overall 

PCB area. 
■​ Factors: Number of transistors, complexity of interconnections, size of 

functional units, number of pins. 
■​ Optimization Goal: Minimize logic gates, share resources, reduce 

bit-widths (if possible), optimize layout. Crucial for wearables, IoT 
devices. 

○​ Performance: 
■​ Definition: How quickly the system accomplishes its task. 
■​ Metrics: 

■​ Execution Time (Latency): Total time from input to output for 
a single task. 

■​ Throughput: Number of tasks completed per unit of time (e.g., 
samples per second, frames per second). 

■​ Clock Frequency: The rate at which the synchronous circuit 
operates (MHz, GHz). Higher frequency generally means 
faster operation. 

■​ Critical Path Delay: The longest combinational path in the 
circuit between two sequential elements (flip-flops). This delay 
limits the maximum clock frequency. 

■​ Optimization Goal: Minimize clock cycles per task, increase clock 
frequency, exploit parallelism. 

○​ Power Consumption: 
■​ Definition: The electrical power dissipated by the system. 
■​ Components: 

■​ Dynamic Power (P_dynamic=CcdotV2cdotfcdotalpha): 
Power consumed when transistors switch. 

■​ C: Switched capacitance (related to number of active 
transistors and wire lengths). 

■​ V: Supply voltage (most dominant factor). 
■​ f: Operating frequency. 
■​ $\alpha$ (alpha): Switching activity factor 

(average number of transitions per clock cycle). 
■​ Static Power (P_static=I_leakagecdotV): Power consumed 

due to leakage currents even when transistors are not 
switching. Increases with transistor count and temperature, 
and as technology nodes shrink. 



■​ Optimization Goal: Reduce voltage, lower frequency (if performance 
permits), minimize switching activity, use low-leakage transistors, 
power gating. Critical for battery-powered devices and reducing 
cooling requirements. 

○​ Flexibility/Re-programmability: 
■​ Definition: The ease with which the system's functionality can be 

changed after manufacturing. 
■​ Trade-off: High for GPPs (software updates), very low for SPPs 

(hardware redesign). FPGAs offer a middle ground (reconfigurable 
hardware). 

○​ Time-to-Market (TTM): 
■​ Definition: The duration from product concept to commercial 

availability. 
■​ Factors: Design complexity, verification effort, manufacturing lead 

times. 
■​ Optimization Goal: Use proven IP, design automation tools, rapid 

prototyping (e.g., using FPGAs for early development). 
○​ Other Important Metrics: Reliability, testability, maintainability, safety, 

security. 
●​ 2.4.2 Optimization Opportunities at Different Design Levels Optimization is a 

multi-level process. Changes at higher levels of abstraction often have a more 
profound impact than low-level optimizations. 

○​ 2.4.2.1 Optimizing the Original Program/Algorithm: High-Level Impact 
■​ Principle: The most significant gains in performance, power, and area 

often come from selecting or developing a fundamentally more 
efficient algorithm. A clever algorithm can outperform a brute-force 
one, regardless of hardware implementation. 

■​ Techniques: 
■​ Algorithmic Refinement/Selection: Research and choose 

algorithms with lower computational complexity (e.g., O(NlogN) 
instead of O(N2)). For example, using the Fast Fourier 
Transform (FFT) instead of a direct Discrete Fourier Transform 
(DFT) for signal processing. 

■​ Reducing Redundant Computations: Identify and eliminate 
calculations whose results are already known or can be 
reused. Use common subexpression elimination. 

■​ Minimizing Memory Accesses: Memory access is slow and 
power-hungry. Design algorithms that minimize reads and 
writes to memory, emphasizing data locality. 

■​ Data Type Optimization: Use the smallest possible bit-widths 
for variables that still maintain the required precision. This 
directly reduces the size of registers, adders, multipliers, and 
interconnects in the datapath. For example, if an 8-bit value is 
sufficient, don't use a 32-bit register. 

■​ Parallelism Exposure: Structure the algorithm to expose 
maximum inherent parallelism. This is critical for mapping to 
parallel hardware architectures in SPPs. 



■​ Example: For our GCD, Euclid's algorithm is efficient. An inefficient 
GCD algorithm (e.g., iterating from min(A,B) down to 1) would lead 
to drastically larger and slower hardware. 

○​ 2.4.2.2 Optimizing the FSMD: Architectural Refinements Once the 
algorithm is chosen, we look at optimizing its FSMD representation before 
detailed hardware design. 

■​ State Merging/Reduction: 
■​ Concept: If two or more states in your FSMD perform identical 

sets of operations on the datapath and have identical 
transitions for all possible input conditions, they are considered 
equivalent. 

■​ Benefit: Merging equivalent states reduces the total number of 
states in the FSM, which means fewer flip-flops for the state 
register and simpler next-state and output logic, leading to 
smaller area and potentially faster operation. 

■​ Methods: Formal state minimization algorithms (e.g., 
implication table method, partitioning algorithm) can 
systematically identify equivalent states. 

■​ Re-timing (or Register Balancing): 
■​ Concept: This technique involves moving registers across 

combinational logic blocks to reduce the critical path delay, 
thereby allowing for a higher clock frequency. If a 
combinational path is too long, a register can be inserted in the 
middle to break it into two shorter paths, increasing the clock 
speed. Conversely, registers can sometimes be removed if 
they are not strictly necessary for timing or functionality. 

■​ Benefit: Improves maximum clock frequency (performance). 
■​ Caution: Requires careful analysis to ensure functional 

correctness and avoid introducing new hazards or violating 
data dependencies. It changes the latency of the computation 
(number of clock cycles). 

■​ Considering Output Timing Changes: Any FSMD optimization must 
be carefully checked for its impact on the timing of control signals and 
data availability. A re-timed operation might output a result a cycle 
later, which could break a dependency in another part of the system if 
not accounted for. 

○​ 2.4.2.3 Optimizing the Datapath: Resource Management Datapath 
optimization focuses on efficient utilization of hardware resources. 

■​ Resource Sharing (Time-Multiplexing): 
■​ Concept: If an algorithm performs the same operation (e.g., 

addition) in different states or at different times, instead of 
dedicating a separate adder for each instance, a single adder 
can be shared among them. The controller then schedules and 
routes data to this shared adder at the appropriate clock cycles 
using multiplexers. 

■​ Benefit: Reduces area (fewer functional units) and potentially 
power (only one unit is active at a time). 



■​ Trade-off: Increases latency (more clock cycles might be 
needed to complete the task because operations are 
serialized), increases multiplexer complexity and propagation 
delay through multiplexers. 

■​ Example (GCD): If we had multiple modulo operations in 
different parts of a complex algorithm, we could use a single 
modulo unit instead of one for each. 

■​ Register Sharing (Register Allocation): 
■​ Concept: If two or more variables in the algorithm have 

non-overlapping lifetimes (meaning they are never needed 
simultaneously), they can be assigned to the same physical 
register in the datapath. 

■​ Benefit: Reduces the total number of registers, saving area 
and power. 

■​ Method: Performed during the "register allocation" phase of 
high-level synthesis, often using graph coloring algorithms. 

■​ Minimizing Multiplexer Inputs and Functional Units: 
■​ Every gate and wire in a multiplexer adds to area and delay. By 

carefully structuring the datapath and minimizing the number of 
sources that feed into a register or functional unit, you can 
reduce the complexity of multiplexers. 

■​ Avoiding unnecessary or underutilized functional units also 
contributes to area and power savings. 

■​ Pipelining: 
■​ Concept: Dividing a long combinational operation into smaller 

stages, with registers placed between each stage. While a 
single operation takes more clock cycles (increased latency), 
multiple operations can be processed concurrently in different 
pipeline stages, leading to significantly higher throughput. 

■​ Benefit: Dramatically increases throughput, allowing higher 
data rates. 

■​ Trade-off: Increases latency, requires more registers (area), 
and introduces pipeline hazards that need to be managed by 
the controller. 

○​ 2.4.2.4 Optimizing the Controller (FSM): Efficient Control Logic The 
controller, though typically smaller than the datapath, is critical for 
sequencing, and its optimization impacts overall system performance and 
area. 

■​ State Minimization: 
■​ Concept: As mentioned, reducing the number of redundant 

states in the FSM. Formal methods like the Partitioning 
Algorithm or Implication Table Method are used to 
systematically find and merge equivalent states. 

■​ Benefit: Fewer states mean fewer flip-flops for the state 
register and simpler next-state and output combinational logic. 
This translates to smaller area, potentially lower power, and 
faster operation (due to reduced logic depth). 

■​ State Encoding: 



■​ Concept: Assigning unique binary codes to each state. The 
choice of encoding scheme profoundly impacts the complexity 
and speed of the controller's combinational logic. 

■​ Common Schemes: 
■​ Binary Encoding (Minimum Bit Encoding): Uses the 

fewest number of flip-flops (lceillog_2Nrceil for N 
states). While area-efficient for flip-flops, it can lead to 
complex and slow next-state/output logic. 

■​ One-Hot Encoding: Uses one flip-flop per state (N 
flip-flops for N states). Only one flip-flop is active ('1') at 
any given time. This typically results in much simpler 
(often AND/OR gate based) next-state and output logic, 
leading to faster operation and easier debugging, 
despite using more flip-flops. 

■​ Gray Code Encoding: Neighboring states differ by 
only one bit. Can be useful in specific asynchronous 
counter designs to avoid glitches, but less common for 
general FSMs. 

■​ Johnson Code (Twisted Ring Counter): Another 
sequential encoding with good properties for certain 
types of counters. 

■​ Choice: Often, one-hot encoding is preferred for 
performance-critical controllers due to its simpler logic and 
faster critical path, even if it uses more flip-flops. 

■​ Logic Minimization Techniques (for Next-State and Output Logic): 
■​ After state encoding, the next-state and output functions are 

expressed as sum-of-products or product-of-sums Boolean 
equations. 

■​ Techniques like Karnaugh Maps (for small number of 
variables) and advanced Boolean logic minimization 
algorithms (e.g., Quine-McCluskey, Espresso heuristic 
algorithms used by synthesis tools) are applied to find the 
minimal set of logic gates to implement these functions. 

■​ Benefit: Reduces gate count (area), shortens critical paths 
(speed), and reduces switching activity (power). 

●​ 2.4.3 Power Optimization Techniques (Deeper Dive): Energy-Conscious Design 
Given the criticality of power in embedded systems, a dedicated discussion is 
warranted. 

○​ Reducing Switching Activity (alpha): 
■​ Clock Gating: Disabling the clock signal to registers or entire 

functional blocks when their outputs are not needed. If a register's 
value isn't changing or being used, its clock can be temporarily halted, 
preventing its flip-flops from consuming dynamic power. This is a very 
common and effective technique. 

■​ Data Gating: Similar to clock gating, but involves using logic gates to 
block data inputs to logic blocks when they are idle, preventing 
unnecessary transitions from propagating. 



■​ Minimizing Redundant Transitions: Design logic such that signals 
only toggle when absolutely necessary. 

■​ Glitch Reduction: Minimizing spurious signal transitions (glitches) in 
combinational logic, which consume power even if they don't affect the 
final output. 

○​ Voltage and Frequency Scaling (DVFS - Dynamic Voltage and Frequency 
Scaling): 

■​ Concept: Exploits the P_dynamicproptoV2 relationship. By 
dynamically reducing the supply voltage (Vdd) and correspondingly 
the clock frequency (as lower voltage implies slower operation), 
significant power savings can be achieved during periods of low 
workload. When higher performance is needed, voltage and frequency 
are scaled up. 

■​ Implementation: Requires power management units (PMUs) and 
voltage regulators. 

■​ Benefit: Large power savings, especially in battery-powered systems. 
○​ Power Gating: 

■​ Concept: More aggressive than clock gating. Completely cuts off the 
power supply (Vdd) to inactive blocks (power domains) using header 
or footer switches (load transistors). 

■​ Benefit: Eliminates both dynamic and static (leakage) power in the 
gated blocks. 

■​ Challenge: Introduces power-up/power-down sequences, which take 
time and can cause voltage droops. Requires "state retention" 
mechanisms for gated blocks that need to remember their state. 

○​ Low-Power Design Methodologies: 
■​ Transistor Sizing: Choosing optimal transistor sizes to balance 

performance, area, and power. Larger transistors are faster but 
consume more power and area. 

■​ Gate-Level Power Optimization: Using specialized low-power 
standard cell libraries provided by fabrication foundries. These cells 
are designed with different transistor characteristics (e.g., high-Vt 
(threshold voltage) transistors for low leakage, but slower; low-Vt for 
high performance, but higher leakage). 

■​ Sleep Modes/Standby Modes: Designing the entire system to enter 
various low-power states when idle, shutting down non-essential 
components. 

■​ Architectural Optimizations: Designing the high-level architecture 
with power in mind, e.g., choosing parallel vs. serial processing based 
on power budget, or using specialized accelerators. 
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