Embedded Systems: Week 2 - Designing Single
Purpose Processors and Optimization

Course Overview: Welcome to Week 2 of our "Embedded Systems" course, where we
delve into the intricate art and science of Designing Single Purpose Processors (SPPs)
and their Optimization. This module is meticulously crafted to transform your
understanding of digital hardware design, guiding you from high-level algorithmic concepts to
low-level gate-level implementations. You will gain a profound appreciation for why SPPs are
indispensable in modern embedded systems, offering unparalleled efficiency for specialized
tasks. We will systematically explore the entire design flow, from translating algorithms into
the powerful Finite State Machine with Datapath (FSMD) model, to meticulously crafting the
controller and datapath, and finally, applying sophisticated optimization techniques to
achieve peak performance, minimal power consumption, and compact physical size.
Prepare for an immersive journey into the heart of custom hardware acceleration.

Learning Objectives: Upon successful completion of this rigorous module, you will possess
the ability to:

e Critically evaluate the architectural paradigms of General Purpose Processors
(GPPs) versus Single-Purpose Processors (SPPs), discerning their respective
strengths, weaknesses, and optimal application domains within embedded systems.

e Proficiently translate complex algorithms into a structured Finite State Machine
with Datapath (FSMD) representation, capturing both the control flow and data
manipulation aspects of computational tasks.

e Architect and implement the distinct yet interconnected components of an SPP: the
controller (sequencing and decision-making unit) and the datapath (data processing
and storage unit), using sound digital design principles.

¢ Demonstrate mastery in applying both combinational and sequential logic
design methodologies to realize efficient and correct hardware for processor
implementation.

e Strategically identify and apply a diverse array of optimization techniques at
various levels of design abstraction — from algorithmic enhancements to gate-level
refinements — targeting critical metrics such as speed, area, and power.

e Conduct insightful trade-off analyses among competing design metrics (e.g.,
performance vs. power vs. area vs. NRE cost), enabling judicious decision-making
for real-world embedded system design challenges.

e Develop a foundational understanding of low-power design principles essential for
energy-efficient embedded solutions.

Module 2.1: Introduction to Single-Purpose Processors

This foundational section establishes the necessity and unique value proposition of
single-purpose processors in the embedded landscape. We will meticulously compare them

with general-purpose processors, highlighting the architectural philosophies and
performance characteristics that differentiate these two fundamental computing paradigms.

e 2.1.1 General Purpose Processors vs. Single-Purpose Processors: A
Comparative Analysis
o General Purpose Processors (GPPs): The Programmable Workhorses

m Definition and Architecture: A GPP is a microprocessor designed to
execute a broad range of instructions, allowing it to perform diverse
tasks merely by loading different software programs. Its architecture
typically includes:

m Central Processing Unit (CPU): Comprising an Arithmetic
Logic Unit (ALU) for computations, control unit for instruction
decoding and execution sequencing, and registers for
temporary data storage.

m Memory Hierarchy: Cache memory (L1, L2, L3) for speed,
main memory (RAM) for active programs and data, and
secondary storage (SSD/HDD) for persistent data.

m Input/Output (I/0) Interfaces: For communication with
peripherals.

m Bus Structures: Data bus, address bus, control bus for
internal communication.

m Key Characteristics:

m Programmability/Flexibility: Its primary strength. A single
hardware unit can perform countless functions, from word
processing to complex simulations, by changing its software.

m Instruction Set Architecture (ISA): Defines the set of
instructions (e.g., ADD, SUB, MOV, JUMP) that the processor
understands and can execute. GPPs have rich and often
complex ISAs (RISC like ARM, MIPS; CISC like x86).

m Fetch-Decode-Execute Cycle: The fundamental operational
loop. Instructions are fetched from memory, decoded,
operands are fetched, the operation is executed, and results
are written back. This cycle introduces inherent overhead.

m Typical Applications: Desktop computers, laptops,
smartphones, servers, embedded systems requiring high
flexibility (e.g., infotainment systems, advanced robotics
controllers).

m Advantages of GPPs: High flexibility, relatively low NRE cost (as the
hardware is off-the-shelf), faster time-to-market for many applications
(just write software).

m Disadvantages of GPPs: Lower performance for highly specialized
tasks compared to custom hardware, higher power consumption for
the same task (due to general-purpose overhead), larger physical
footprint.

o Single-Purpose Processors (SPPs): The Dedicated Specialists

m Definition and Architecture: An SPP (also known as a custom logic
circuit, ASIC - Application-Specific Integrated Circuit, or dedicated
hardware accelerator) is a digital circuit meticulously designed and

O

optimized to perform one specific computational task or algorithm
very efficiently. Its architecture is "hardwired" directly to the problem.
Key Characteristics:

m Fixed Functionality: Its logic gates are arranged to directly
implement a particular algorithm. No instruction set or program
memory is typically involved in the same way as a GPP.

m Parallelism: Can exploit inherent parallelism in an algorithm
by performing multiple operations simultaneously, leading to
higher throughput and lower latency.

m Optimized Data Flow: Data paths are designed precisely for
the required operations, minimizing unnecessary routing or
multiplexing.

m No Instruction Overhead: Lacks the fetch, decode, and
instruction pipeline overhead of GPPs, leading to fewer clock
cycles per operation.

m Typical Applications: Video encoding/decoding (H.264,
H.265 codecs), audio processing (MP3, AAC codecs), digital
signal processing (DSP) filters, image processing units (GPUs,
dedicated image signal processors), encryption/decryption
accelerators, motor controllers, specialized industrial control
systems, neural network accelerators (NPUs).

Advantages of SPPs: Highest possible performance for the specific
task, smallest physical size, lowest power consumption for the specific
task.

Disadvantages of SPPs: Very high NRE cost, long time-to-market,
absolutely no flexibility (modifying function requires hardware
redesign).

The Crucial Trade-offs: A Spectrum of Design Choices The decision
between GPPs and SPPs (or hybrids like FPGAs, which offer
reconfigurability) hinges on a careful evaluation of the following critical design
metrics:

Performance: SPPs usually win for specific, compute-intensive tasks
(lower latency, higher throughput).

Size (Area): SPPs can be significantly smaller as they include only
necessary logic.

Power Consumption: SPPs are typically more power-efficient for
their dedicated task due to highly optimized circuits and lack of
general-purpose overhead.

Non-Recurring Engineering (NRE) Cost: SPPs demand much
higher upfront design, verification, and mask costs. Economically
viable only for very high production volumes where NRE is amortized
per unit.

Unit Cost: For extremely high volumes, the unit cost of an SPP can
be lower than a GPP solution due to simpler final silicon.
Time-to-Market: Generally longer for SPPs due to complex hardware
design and verification cycles.

Flexibility/Re-programmability: Extremely low for SPPs; high for
GPPs.

m Risk: Higher design risk for SPPs; bugs in hardware are costly to fix.
2.1.2 Unpacking the Advantages of Custom Single-Purpose Processors Delving
deeper into why SPPs are chosen for demanding embedded applications:
o Superior Performance through Direct Hardware Implementation:

m Elimination of Instruction Overhead: Unlike GPPs that spend
cycles fetching, decoding, and executing generic instructions, an
SPP's operations are "hardwired." This means operations can often
begin immediately as data becomes available.

m Exploiting Parallelism: Algorithms often have inherent parallelism
(operations that can occur simultaneously). SPPs can be designed
with multiple functional units working in parallel (e.g., several adders
operating simultaneously), leading to massive speedups. GPPs
typically achieve limited parallelism through techniques like pipelining
or superscalar execution, but SPPs can be custom-tailored for
maximum concurrency.

m Optimized Datapaths: The data flow within an SPP is precisely
tailored to the algorithm. There are no general-purpose buses or
complex routing that might introduce delays. Wires are designed for
optimal signal propagation.

m Higher Clock Frequencies (Potentially): Simpler logic paths within
SPPs can sometimes allow for higher clock frequencies compared to
the complex logic paths in a GPP's control unit.

o Exceptional Miniaturization (Smaller Size):

m Reduced Logic Gates: An SPP only contains the specific logic gates
required to implement its function. It doesn't need instruction
decoders, large general-purpose register files, complex control units
for arbitrary instruction sets, or large program memories.

m Elimination of Unused Features: Every transistor in an integrated
circuit (IC) occupies area. By removing all components not directly
essential for the single purpose, SPPs can achieve remarkably
compact footprints, crucial for space-constrained devices (e.g., smart
cards, medical implants, tiny sensors).

m Fewer Interconnections: A more streamlined design generally leads
to fewer and shorter interconnections, further saving area and
reducing signal propagation delays.

o Unrivaled Power Efficiency:

m Reduced Dynamic Power: Dynamic power consumption
(P_dynamicproptoCcdotV2cdotfcdotalpha) is proportional to
capacitance (C), supply voltage (V) squared, frequency (f), and
switching activity (alpha). SPPs can optimize all these factors:

m Smaller C: Fewer transistors and shorter wires mean lower
capacitance.

m Lower V: Often, SPPs can operate at lower supply voltages if
performance requirements permit.

m Lower alpha (Switching Activity): By precise control and
clock gating (turning off clocks to idle parts), unnecessary
switching can be minimized.

Reduced Static Power: Static power (or leakage power) is consumed
even when the circuit is idle due to current leakage through
transistors. Fewer transistors (smaller area) directly translates to lower
static power.

No General-Purpose Overhead Power: A GPP will always consume
some power for its core components, even when running a simple
task, due to the need to maintain its general-purpose capabilities. An
SPP avoids this inherent overhead.

e 2.1.3 The Inherent Disadvantages and Design Trade-offs \While powerful, SPPs
come with significant drawbacks that limit their applicability:
o Prohibitive Non-Recurring Engineering (NRE) Cost:

Custom Design Effort: Designing an SPP from scratch requires
highly specialized hardware description languages (HDLs like VHDL
or Verilog), sophisticated Electronic Design Automation (EDA) tools,
and highly skilled design engineers.

Verification Complexity: Thoroughly verifying a custom hardware
design is incredibly complex and time-consuming. Bugs found late in
the process (after fabrication) are astronomically expensive to fix
(requiring a "re-spin" of the chip).

Mask Costs: For fabricating an ASIC, a set of photolithographic
masks must be produced. These masks are incredibly expensive
(millions of dollars for advanced process nodes). This cost must be
amortized over the total number of chips produced.

Yield Issues: The manufacturing process has inherent defects. Lower
yields (fewer functional chips per wafer) increase the per-unit cost.
Implication: SPPs are generally only economically viable for very
high-volume production runs (millions of units) where the NRE cost
can be spread thin, making the per-unit cost competitive.

o Extended Time-to-Market (TTM):

Long Design Cycles: The entire process—from specification, design
(HDL coding), simulation, synthesis, place and route, to fabrication
and testing—is significantly longer than simply writing and debugging
software for a GPP.

Iteration Delays: If design flaws are found late, fixing them can
involve multiple iterations of the entire flow, especially fabrication,
adding months or even a year to the project timeline.

Implication: Not suitable for rapidly evolving markets or products with
short shelf lives.

o Absolute Lack of Flexibility:

Hardware Fixity: Once an SPP is manufactured, its functionality is
fixed. It cannot be reprogrammed or updated with new features or
algorithmic improvements through software.

Obsolete Design Risk: If the standard for which the SPP was
designed changes (e.g., a new video compression codec), the entire
hardware becomes obsolete.

Bug Fixes: Discovering a functional bug after fabrication necessitates
a costly and time-consuming hardware redesign and re-fabrication.

This contrasts sharply with GPPs, where most bugs can be fixed via
software updates.

m Implication: Only suitable for highly stable and well-defined
functionalities.

Module 2.2: Designing Custom Single-Purpose Processors - The FSMD

Approach

This section is the core of SPP design. We will systematically learn how to transform a
high-level algorithm into the structured FSMD model, which serves as the blueprint for
building the physical hardware. This involves breaking down the algorithm into sequential
control steps and parallel data operations.

e 2.2.1 Problem Description and Algorithmic Representation: The Starting Point
Defining the Problem: Before any design work begins, a clear,
unambiguous, and complete specification of the problem is essential.
What are the inputs? What are the outputs? What is the exact transformation
or computation required? What are the performance constraints (speed,
throughput, latency)? What are the resource constraints (area, power)?
High-Level Algorithmic Representation: Once the problem is defined, the
first step towards hardware design is to express the solution as a high-level
algorithm. This step is crucial because it allows us to reason about the logic
and control flow without immediately worrying about hardware details.

m Common Notations:

o

Pseudocode: An informal, high-level description of an
algorithm's operating principle. It uses the structural
conventions of programming languages but is intended for
human reading rather than machine execution.

C/C++ Code: A common starting point for hardware design, as
many algorithms are initially developed and verified in these
languages. Tools exist to synthesize hardware from a subset of
C/C++ (High-Level Synthesis - HLS).

Flowcharts: Graphical representation of an algorithm,
showing steps as boxes of various kinds, and their order by
connecting them with arrows. Useful for visualizing control
flow.

m Importance: This step helps in:

Clarity: Ensuring a shared understanding of the problem and
its solution among designers.

Verification: The algorithm can be simulated and tested in
software to ensure its correctness before committing to costly
hardware design.

Abstraction: It allows focusing on the "what" (the logic) before
the "how" (the hardware implementation).

o Example: A Simple Finite Impulse Response (FIR) Filter Let's consider a
simple 3-tap FIR filter, commonly used in DSP. y[n] = c8 * x[n] + c1
* x[n-1] + ¢2 * x[n-2] Where:
m Vy[n] is the current output sample.
m x[n] is the current input sample.
m x[n-1]and x[n-2] are previous input samples (delayed versions).
m CO, c1, c2 are filter coefficients (constants).

Pseudocode representation for a single output calculation:

function Compute_FIR_Output(current_input_x, coeff_cO0, coeff_c1, coeff_c2):
/I Assume registers for previous inputs: X_prev1, X_prev2
I/l Shift operations (oldest input drops, current input becomes latest previous)
X _prev2 = X_prev1
X_prev1 = current_input_x

/[Perform multiplications

termO = coeff_c0 * current_input_x
term1 = coeff_c1 * X_prev1

term2 = coeff c2 * X _prev2

/I Perform additions
sum01 = term0 + term1
final_output = sum01 + term2

return final_output

O
e 2.2.2 Finite State Machine with Datapath (FSMD) Model: The Blueprint The
FSMD is the canonical model for designing synchronous digital systems, especially
single-purpose processors. It elegantly separates the control logic (what to do and
when) from the data processing logic (how to do it).
o Introduction to FSMD: The Synergy of Control and Data

m Finite State Machine (FSM) - The Controller: This is the "brain" of
the SPP. It dictates the sequence of operations. It transitions between
a finite number of states, each representing a distinct phase or step in
the algorithm. Transitions are triggered by internal conditions (status
signals from the datapath) or external inputs. In each state, the FSM
generates control signals that orchestrate the operations within the
datapath.

m Datapath - The Data Processor: This is the "muscle" of the SPP. It
comprises the hardware units that store and manipulate data. These
include:

m Registers: For storing variables and intermediate results.

m Functional Units: Logic blocks that perform arithmetic
(adders, multipliers, ALUs) and logical operations (AND, OR,
XOR).

m Multiplexers: For selecting data paths.

m Interconnections: Wires that connect these components.

m Interaction: The controller provides control signals to the datapath
(e.g., "load register A," "enable adder," "select input 0 on mux"). The
datapath, in turn, provides status signals (conditions) back to the
controller (e.g., "result is zero," "overflow occurred") that influence the
next state transition of the FSM.

o Translating Algorithmic Constructs into FSMD States and Operations:
This is the most critical step in conceptualizing your SPP. You systematically
map each part of your algorithm to components and actions within the FSMD.

m Variable Declarations: Each persistent variable in your algorithm
(X_prevl, X_prev2 in our FIR example) will typically map to a
dedicated register in the datapath. Inputs and outputs will also be
associated with registers or I/O ports.

m Assignment Statements (variable = expression):

m These require routing data. The expression part dictates the
functional units needed (e.g., term@ = c@ *
current_input_x requires a multiplier).

m The result of the expression needs to be written into the
target variable's register. This means enabling the write
operation of that register (a control signal from the FSM) and
ensuring the correct data path is selected to its input (using a
multiplexer, if multiple sources can write to it).

m Example (FIR): X_prev2 = X_prev1 implies routing the
output of X_prev1 register to the input of X_prev2 register,
and asserting 1load_X_prev2 control signal.

m Arithmetic and Logical Operations (+, -, *, /, %, AND, OR, NOT, ==,
Iz, <, 5)

m These directly map to functional units in the datapath. An
ADD operation requires an adder, a * (multiply) requires a
multiplier, == requires a comparator.

m The inputs to these functional units come from registers or

input ports; their outputs go to other functional units or
registers.

m Example (FIR): term@ = c0 * current_input_x
requires a multiplier where one input is c0 and the other is
current_input_x.

m Conditional Statements (if-else):

m These primarily affect the control flow of the FSM.

m The condition (if (B !'= 0) in GCD) is evaluated by a
comparator (a functional unit) in the datapath.

m The result of the condition (e.g., a single bit indicating

true/false) is fed as a status signal from the datapath to the
controller.

The controller then uses this status signal to determine the
next state transition. If true, go to State A, if false, go to State
B

m Loops (for,while):

Loops are implemented by having the FSM transition back to
an earlier state (the "loop body" state or "loop condition check"
state) as long as the loop condition remains true.

When the loop condition becomes false, the FSM transitions
out of the loop to the subsequent state.

Loop Counters: For for loops, an additional counter register
and incrementer might be needed in the datapath, with its
output fed back to the controller for loop termination checks.

lllustrative Example: FSMD for FIR Filter (simplified for one output
calculation) Let's refine the FIR example into an FSMD. Assume data is

W-bits wide.

m Datapath Components:

Registers: X_reg (for current_input_x), X_previ_reg,
X_prev2_reg.

Multipliers: MUL®, MUL1, MUL2 (or a single shared multiplier).
Adders: ADD@, ADD1 (or a single shared adder).

Input ports: DATA_IN (for current_input_x), CA_IN,
C1_IN, C2_IN.

Output port: RESULT_OUT.

Muxes: For routing data to register inputs if they can be loaded
from multiple sources.

m FSM States & Transitions:

IDLE_STATE:
m Actions: Wait for start_signal.
m Transitions: If start_signal is asserted, transition to
LOAD_INPUTS_AND_SHIFT.

LOAD_INPUTS_AND_SHIFT_STATE:
m Actions:

m X_prev2_reg <- X_prevl_reg (Control:
load_X_prev2, mux_X_prev2_sel

X_previ_reg_out).

m X_prevl_reg <- X_reg (Control:
load_X_prev1, mux_X_previ_sel
X_reg_out).

m X_reg <- DATA_IN (Control: load_X_reg,
mux_X_reg_sel = DATA_IN).

m Transitions: Unconditionally transition to
MULTIPLY_STATE.

MULTIPLY_STATE:
m Actions:

m term@_res_reg <- CO_IN * X_reg
(Control: enable_MULO,
load_term@_res_regq).

m termli_res_reg <- C1_IN *
X_prevl_reg (Control: enable_MULT,
load_terml_res_reg).

m term2_res_reg <- C2_IN *
X_prev2_reg (Control: enable_MUL2,
load_term2_res_regq).

m Transitions: Unconditionally transition to
ADD_STATE_1.
m ADD_STATE_1:
m Actions:

m sumB@l_res_reg <- term@_res_reg +
terml_res_reg (Control: enable_ADD®,
load_sum@1_res_regq).

m Transitions: Unconditionally transition to
ADD_STATE_2.
m ADD_STATE_2:
m Actions:

m final_output_reg <- sum@l_res_reg +
term2_res_reg (Control: enable_ADDT,
load_final_output_reg).

m Assert done_signal.

m Transitions: Unconditionally transition back to
IDLE_STATE (or wait for another start_signal).
o This FSMD clearly defines the sequence of operations and the required
datapath components.
2.2.3 Partitioning FSMD into Controller and Datapath: The Two Pillars Once the
FSMD is conceptualized, we physically separate it into its two interdependent units.
o Controller Design: The Brain of the SPP
m Role and Function: The controller is a sequential circuit responsible
for generating the necessary control signals to orchestrate the
datapath's operations in the correct sequence. It interprets inputs
(external controls, status signals from datapath) and current state to
determine the next state and corresponding outputs.
m Extracting Control Logic:
m States: Identify all the distinct states identified in your FSMD
(e.g., IDLE, LOAD_INPUTS, MULTIPLY, ADD1, ADD2, DONE).
m Transitions: Define the conditions under which the FSM
moves from one state to another (e.g., start_signal,
zero_f1lag).
m Control Signals: For each state, list all the specific control
signals that must be asserted (set to '1') or de-asserted (set to

'0") to make the datapath perform its intended operation in that
cycle. These are the outputs of the controller.

m Status Signals: |dentify all inputs the controller needs from
the datapath or external world to make decisions about state
transitions. These are the inputs to the controller.

m Representing the Controller as a Pure Finite State Machine
(FSM): The controller itself is a synchronous FSM.

m State Diagram: A graphical representation showing states as
nodes and transitions as directed edges, labeled with input
conditions and output control signals.

m State Table: A tabular representation listing current state,
inputs, next state, and outputs for all possible combinations.

m Implementing the FSM:

m State Register: A bank of D-type flip-flops (typically) whose
outputs represent the current state. The number of flip-flops
depends on the number of states (e.g., for 5 states, 3 flip-flops:
Iceillog_25rceil=3).

m Next-State Logic (Combinational Logic): This is a
combinational circuit that takes the current state (from the state
register) and the controller inputs (status signals, external
controls) and calculates the next state to be loaded into the
state register at the next clock edge. This logic is derived from
the state table.

m Output Logic (Combinational Logic): This is another
combinational circuit that takes the current state (and
sometimes, the controller inputs, for Mealy-type FSMs) and
generates all the necessary control signals that drive the
datapath. This logic is also derived from the state table.

Datapath Design: The Muscles of the SPP
m Role and Function: The datapath is the collection of hardware units
that store, manipulate, and transfer data as instructed by the
controller. It performs the actual computations.
m lIdentifying Data Storage Elements (Registers):

m Each variable in your algorithm that needs to hold a value over
multiple clock cycles (e.g., X_reg, X_prevl_reg,
X_prev2_reg in FIR) will be implemented as a register. A
register is essentially a collection of D-flip-flops, all clocked
together.

m Registers typically have a 1oad enable input (controlled by the
FSM) that dictates when new data is written into them.

m Input/Output ports are often implemented as registers (input
registers, output registers) for synchronization and buffering.

m Identifying Functional Units (Combinational Logic):

m Any arithmetic or logical operation in your algorithm requires a
dedicated hardware block.

m Arithmetic Logic Units (ALUs): Versatile units that can
perform multiple arithmetic (add, subtract, increment,

decrement) and logical (AND, OR, NOT, XOR) operations. A
control input selects the specific operation.

m Dedicated Adders, Subtractors, Multipliers, Dividers: If
only one specific operation is needed frequently, a dedicated
unit might be more efficient than a full ALU.

m Comparators: To check conditions like equality (A==B),
inequality (A!=B), greater than (A>B), etc. Their outputs (e.g.,
equal_flag, greater_flag) are status signals fed back to
the controller.

m Shifters: For bit-shifting operations.

m Interconnecting Components: The Plumbing for Data Flow:

m Wires: The basic connections for transferring data between
components.

m Multiplexers (Muxes): Crucial for routing data. If a register or
a functional unit can receive data from multiple sources, a
multiplexer is placed at its input. The select lines of the
multiplexer are control signals generated by the FSM. For
example, mux_X_reg_sel in our FIR example would choose
between DATA_IN or 0@ if we want to clear it.

m Buses: Collections of parallel wires used to transfer multi-bit
data between multiple components. Care must be taken with
bus arbitration if multiple sources can drive the bus.

m Tri-state Buffers: Used to connect multiple outputs to a single
bus by enabling only one output at a time. While conceptually
simple, they are often avoided in strict synchronous logic in
favor of multiplexers to prevent bus contention issues.

m Creating Control Inputs and Outputs for the Datapath:

m Control Inputs: Each datapath component that performs an
action (e.g., a register loading data, an ALU performing an
operation, a mux selecting an input) needs one or more control
inputs from the FSM. These are the load_X_reg,
enable_MULB, mux_X_prev2_sel signals from our FIR
example.

m Status Outputs: Functional units (especially comparators)
generate status signals that convey information about the data.
These signals (e.g., zero_flag, overflow_flag,
equal_flag) are fed back as inputs to the controller,
influencing its state transitions.

Module 2.3: Implementation Details of Custom Single-Purpose
Processors

This section provides a rigorous review of the fundamental digital logic concepts that
underpin all hardware implementations. From the simplest gates to complex sequential
circuits, mastering these building blocks is paramount for bringing your FSMD to life.

e 2.3.1 Combinational Logic Review: The Building Blocks of Computation
o Definition: Combinational logic circuits are digital circuits whose outputs are
solely determined by their current inputs. They have no memory of past
inputs; for a given set of inputs, the output will always be the same.
o Boolean Algebra: The Mathematical Foundation:
m Variables and Values: Binary variables (0 or 1, representing logic
low/high, false/true).
m Basic Operations:

m AND (°): Output is 1 only if all inputs are 1.

m OR (#): Outputis 1 if any input is 1.

m NOT (' or bar): Inverts the input.

m Laws and Theorems: Commutative, Associative, Distributive laws,
De Morgan's theorems, Absorption law, etc. These are used to
simplify Boolean expressions.
o Logic Gates: The Physical Manifestations of Boolean Operations:
m AND Gate, OR Gate, NOT Gate (Inverter): The fundamental gates.
m NAND Gate, NOR Gate: Universal gates, meaning any other logic
gate or function can be implemented using only NAND gates or only
NOR gates.
m XOR Gate (Exclusive OR), XNOR Gate (Exclusive NOR): Useful for
parity checking, comparison, and addition.
o Combinational Circuit Design Methodology:
m Problem Specification: Clearly define inputs and outputs.
m Truth Table: Create a table listing all possible input combinations and
the desired output for each.
m Boolean Expression Derivation: Write the Boolean expression from
the truth table (e.g., Sum of Products - SOP, Product of Sums - POS).
m Simplification:

m Karnaugh Maps (K-Maps): A graphical method for simplifying
Boolean expressions with up to 5-6 variables. It facilitates
visual identification of adjacent terms that can be combined.

m Boolean Algebra Simplification: Applying Boolean laws and
theorems algebraically to reduce the complexity of the
expression (fewer literals, fewer terms).

m Quine-McCluskey Algorithm: A systematic, tabular method
for minimizing Boolean expressions, especially useful for more
variables where K-Maps become unwieldy. It's often used in
CAD tools.

m Logic Diagram Implementation: Draw the circuit using logic gates
based on the simplified expression.
o Common Combinational Components (as used in Datapaths):
m Multiplexers (Muxes): An N-to-1 data selector. It has N data inputs,
Iceillog_2Nrceil select inputs, and 1 output. The select inputs

determine which data input is routed to the output. Crucial for
implementing data routing under controller direction.

m Decoders: An N-to-2N decoder. It takes an N-bit binary input and
activates exactly one of its 2N output lines. Used for address decoding
or selecting specific units.

m Encoders: Performs the reverse of a decoder. It takes 2N input lines
(one active at a time) and produces an N-bit binary code representing
the active input.

m Adders:
m Half-Adder: Adds two single bits, producing a sum and a
carry.

m Full-Adder: Adds three single bits (two input bits and a
carry-in), producing a sum and a carry-out.

m Ripple-Carry Adder: Multiple full-adders cascaded, where the
carry-out of one stage feeds the carry-in of the next. Simple
but slow for large numbers due to carry propagation delay.

m Carry-Lookahead Adder: A faster adder that computes
carries in parallel, reducing propagation delay.

m Comparators: Circuits that compare two binary numbers (A and B)
and output signals indicating their relationship (e.g., A=B, A>B, A

2.3.2 Sequential Logic Review: The Foundation of Memory and Sequencing
o Definition: Sequential logic circuits are digital circuits whose outputs depend
not only on their current inputs but also on their past inputs, effectively
possessing "memory." They achieve this through feedback paths and memory
elements.
o Latches and Flip-Flops: The Fundamental Memory Elements:

m Latches: Level-sensitive memory devices. Their output can change
as long as the enable input is active. (e.g., SR Latch, D Latch). Often
prone to "race conditions" and transparency issues in complex
synchronous designs.

m Flip-Flops: Edge-triggered memory devices. Their output changes
only at a specific transition of the clock signal (rising edge or falling
edge). This synchronized behavior is critical for stable digital systems.

m D-Flip-Flop (Data Flip-Flop): Most commonly used. It stores
the value present at its 'D' input at the clock edge. Used to
build registers.

m JK-Flip-Flop, T-Flip-Flop: Other types with different excitation
tables, less common for general data storage but useful for
specific counter designs.

o Registers: Storing Multi-bit Data:

m Aregister is a collection of multiple D-flip-flops, all sharing a common
clock signal and often a common enable/load signal. An 8-bit register
stores an 8-bit binary number.

m Registers are fundamental for storing variables, intermediate results,
and holding input/output data between clock cycles.

o Shift Registers: Data Manipulation and Serial Transfer:

m Aregister that can shift its stored data bits to the left or right at each

clock cycle.

m Applications: Serial-to-parallel conversion, parallel-to-serial
conversion, data alignment, simple multiplication/division by powers of
2.

o Counters: Sequencing and Timing:

m Sequential circuits designed to sequence through a predefined pattern
of states, typically representing a count.

m Types: Ripple counters (asynchronous), Synchronous counters (all
flip-flops clocked simultaneously). Synchronous counters are preferred
in SPPs for predictable timing.

m Applications: Generating sequences, timing control signals,
frequency division.

o State Diagrams and State Tables: Describing FSM Behavior:

m State Diagram: A directed graph where nodes represent states and
directed edges represent transitions. Edges are labeled with input
conditions that cause the transition and outputs generated during the
transition (or while in the state).

m State Table: A tabular representation of an FSM. It lists for each
current state and input combination: the next state and the outputs.
This is the direct input for synthesizing the next-state and output
combinational logic.

e 2.3.3 Detailed Example of Single-Purpose Processor Design: The GCD
Processor Let's put all the pieces together by designing a classic example: a
single-purpose processor that calculates the Greatest Common Divisor (GCD) of two
8-bit numbers using Euclid's Algorithm (remainder method).

Algorithm:

function GCD(A, B):
/l Inputs A, B are unsigned 8-bit integers
// Output is unsigned 8-bit integer

while B 1= 0:
remainder = A mod B
A=B
B = remainder

return A

O
o Step 1: Algorithm to FSMD Conversion
m Variables:
m A: A_reg (8-bit register)
m B: B_reg (8-bit register)
m remainder: R_reg (8-bit register, temporary)
m Operations:
m A mod B: Requires an 8-bit Modulo Unit.
m B != 0:Requires an 8-bit Comparator (to compare B with 0).
m Assignments (A = B,B = remainder): Requires data
routing and register loads.
m States (Controller Perspective):

m IDLE: Initial state, waiting for start_signal. Loads A_in
and B_ininto A_reg and B_reqg.

m LOOP_CHECK: Checks if B_reg is equal to 0.

m COMPUTE_MODULO: Calculates A_reg mod B_reg and
stores the result in R_reg.

m UPDATE_REGISTERS: Updates A_reg with B_reg's value
and B_reg with R_reg's value.

m DONE: Computation finished. Sets done_signal high and
outputs A_reg.

o Step 2: Datapath Component Identification and Interconnection
m Registers:

m A_reg (8-bit): Stores current'A' value. Has load_A
enable.

m B_reg (8-bit): Stores current'B' value. Has load_B
enable.

m R_reg (8-bit) : Stores the remainder. Has load_R enable.

m Functional Units:

m Modulo Unit (8-bit): Takes A_reg and B_reg as inputs,
outputs A_reg mod B_reg (the remainder).

m Zero Comparator (8-bit): Takes B_reg as input, outputs
B_is_zero (1ifB_reg == 0, else 0).

m Multiplexers (for register inputs):

m Mux_A_in (2-to-1): Selects between A_in (initial input)
and B_reg_out (for A = B step). Control: sel_A_mux.

m Mux_B_in (2-to-1): Selects between B_in (initial input)
and R_reg_out (for B = remainder step). Control:
sel_B_mux.

m Input/Output Ports:

m A_in (8-bit), B_in (8-bit): External inputs.

m start_signal (1-bit): External control to begin
computation.

m reset_signal (1-bit): External control to reset the
system.

m result_out (8-bit): Output for the final GCD.

m done_signal (1-bit): Indicates computation is complete.

m Interconnections: Wires connecting A_reg_out, B_reg_out to
Modulo Unit inputs; Modulo Unit outputto R_reg_in; B_reg_out to
Zero Comparator; R_reg_out to Mux_B_in; B_reg_out to
Mux_A_in; Mux_A_in_out to A_reg_in; Mux_B_in_out to
B_reg_in; A_reg_out to result_out.

o Step 3: Controller State Diagram Derivation
m States:
m S_IDLE (000): Initial state.

m S_LOOP_CHECK (801): Check loop condition.
m S_COMPUTE_MOD (©10): Perform modulo operation.
m S_UPDATE_REGS (011): Update registers.
m S_DONE (100): Computation complete.

m Transitions and Control Signals (Outputs of Controller):
m From S_IDLE:

m Ifstart_signal == 1:
m load_A = 1 (load A_invia Mux_A_in_sel
= 0)
m load_B = 1 (load B_invia Mux_B_in_sel
= 0)

m Next State = S_LOOP_CHECK
m Else: Stayin S_IDLE.
m From S_LOOP_CHECK:

m [fB_is_zero == 1 (from comparator): Next State =
S_DONE
m Else (B_is_zero == 0): Next State =

S_COMPUTE_MOD
m From S_COMPUTE_MOD:
m enable_modulo_unit = 1
m load_R =1
m Next State = S_UPDATE_REGS
m From S_UPDATE_REGS:

m load_A = 1 (Mux_A_in_sel = 1toload
B_reg_out)

m load_B = 1 (Mux_B_in_sel = 1toload
R_reg_out)

m Next State = S_LOOP_CHECK
m From S_DONE:
m done_signal = 1
m Ifreset_signal == 1:Next State = S_IDLE
m Else: Stay in S_DONE
Step 4: Generating Control Signals for the Datapath (Output Logic of
Controller) Based on the state diagram, we derive Boolean equations for
each control signal. Example:
m load_A = (Current_State == S_IDLE AND start_signal)
OR (Current_State == S_UPDATE_REGS)
m load_B = (Current_State == S_IDLE AND start_signal)
OR (Current_State == S_UPDATE_REGS)
m sel_A_mux = (Current_State == S_UPDATE_REGS) (O for
A_in, 1 for B_reg_out)

sel_B_mux = (Current_State == S_UPDATE_REGS) (0O for
B_in, 1 for R_reg_out)

enable_modulo_unit = (Current_State ==
S_COMPUTE_MOD)

load_R = (Current_State == S_COMPUTE_MOD)
done_signal = (Current_State == S_DONE) (Note: Other
control signals like register enables for R_reg would also be derived.)

o Step 5: State Encoding and Implementation of Controller Logic

State Encoding: We have 5 states, so we need Iceillog_25rceil=3
flip-flops for our state register. Let's use simple binary encoding:

m S _IDLE: 000

m S LOOP_CHECK: 001

s S _COMPUTE_MOD: 010

m S _UPDATE_REGS: 011

m S _DONE: 100
Next-State Logic: For each flip-flop (02, Q1, Q0), derive its
next-state equation (D2, D1, D@) based on current state (2, Q1,
Q0), start_signal, reset_signal, and B_is_zero. This will
involve a set of complex Boolean equations.
Output Logic: Derive Boolean equations for each control signal (e.g.,
load_A, sel_A_mux) as a function of the current state and relevant
inputs.
Hardware Implementation: These Boolean equations are then
synthesized into actual logic gates (AND, OR, NOT, etc.) and
connected to the 3 state flip-flops, forming the complete controller
circuit.

Module 2.4: Optimization Issues for Single-Purpose Processors

Optimization is not an afterthought; it's an integral part of the design process for SPPs. This
section will empower you with techniques to critically evaluate and systematically improve
your designs across various critical metrics.

2.4.1 Design Metrics for Embedded Systems: The Pillars of Evaluation Every
design decision is a trade-off. Understanding these metrics is paramount for making
intelligent design choices.

o Unit Cost:
m Definition: The manufacturing cost per individual embedded system.
m Factors: Silicon area (chip size), packaging, testing, materials (PCB,
components), assembly.
m Optimization Goal: Reduce silicon area, use cheaper packaging,

minimize external components. SPPs are often chosen in high-volume
products to drive down unit cost over time due to optimized silicon.

o Non-Recurring Engineering (NRE) Cost:

Definition: The one-time cost of design, verification, tooling (masks),
and initial prototyping.

Factors: Engineer salaries, EDA tool licenses, fabrication mask set
costs, test equipment.

Optimization Goal: Reduce design cycle time, utilize reusable IP
(Intellectual Property), choose appropriate design methodology (e.g.,
higher-level synthesis tools can reduce NRE by abstracting details but
may lead to less optimal hardware).

o Size (Area):

Definition: The physical footprint of the silicon chip and the overall
PCB area.

Factors: Number of transistors, complexity of interconnections, size of
functional units, number of pins.

Optimization Goal: Minimize logic gates, share resources, reduce
bit-widths (if possible), optimize layout. Crucial for wearables, loT
devices.

o Performance:

Definition: How quickly the system accomplishes its task.
Metrics:

m Execution Time (Latency): Total time from input to output for
a single task.

m Throughput: Number of tasks completed per unit of time (e.g.,
samples per second, frames per second).

m Clock Frequency: The rate at which the synchronous circuit
operates (MHz, GHz). Higher frequency generally means
faster operation.

m Critical Path Delay: The longest combinational path in the
circuit between two sequential elements (flip-flops). This delay
limits the maximum clock frequency.

Optimization Goal: Minimize clock cycles per task, increase clock
frequency, exploit parallelism.

o Power Consumption:

Definition: The electrical power dissipated by the system.
Components:

m Dynamic Power (P_dynamic=CcdotV2cdotfcdotalpha):
Power consumed when transistors switch.

m C: Switched capacitance (related to number of active
transistors and wire lengths).

m V: Supply voltage (most dominant factor).

m f: Operating frequency.

m S\alpha$ (alpha) : Switching activity factor
(average number of transitions per clock cycle).

m Static Power (P_static=l_leakagecdotV): Power consumed
due to leakage currents even when transistors are not
switching. Increases with transistor count and temperature,
and as technology nodes shrink.

O

o

O

m Optimization Goal: Reduce voltage, lower frequency (if performance
permits), minimize switching activity, use low-leakage transistors,
power gating. Critical for battery-powered devices and reducing
cooling requirements.

Flexibility/Re-programmability:

m Definition: The ease with which the system's functionality can be
changed after manufacturing.

m Trade-off: High for GPPs (software updates), very low for SPPs
(hardware redesign). FPGAs offer a middle ground (reconfigurable
hardware).

Time-to-Market (TTM):

m Definition: The duration from product concept to commercial
availability.

m Factors: Design complexity, verification effort, manufacturing lead

times.

m Optimization Goal: Use proven IP, design automation tools, rapid
prototyping (e.g., using FPGAs for early development).
Other Important Metrics: Reliability, testability, maintainability, safety,

security.

e 2.4.2 Optimization Opportunities at Different Design Levels Optimization is a
multi-level process. Changes at higher levels of abstraction often have a more
profound impact than low-level optimizations.
2.4.2.1 Optimizing the Original Program/Algorithm: High-Level Impact
m Principle: The most significant gains in performance, power, and area
often come from selecting or developing a fundamentally more
efficient algorithm. A clever algorithm can outperform a brute-force
one, regardless of hardware implementation.

m Techniques:

O

Algorithmic Refinement/Selection: Research and choose
algorithms with lower computational complexity (e.g., O(NlogN)
instead of O(N2)). For example, using the Fast Fourier
Transform (FFT) instead of a direct Discrete Fourier Transform
(DFT) for signal processing.

Reducing Redundant Computations: Identify and eliminate
calculations whose results are already known or can be
reused. Use common subexpression elimination.

Minimizing Memory Accesses: Memory access is slow and
power-hungry. Design algorithms that minimize reads and
writes to memory, emphasizing data locality.

Data Type Optimization: Use the smallest possible bit-widths
for variables that still maintain the required precision. This
directly reduces the size of registers, adders, multipliers, and
interconnects in the datapath. For example, if an 8-bit value is
sufficient, don't use a 32-bit register.

Parallelism Exposure: Structure the algorithm to expose
maximum inherent parallelism. This is critical for mapping to
parallel hardware architectures in SPPs.

m Example: For our GCD, Euclid's algorithm is efficient. An inefficient
GCD algorithm (e.g., iterating from min (A, B) down to 1) would lead
to drastically larger and slower hardware.

o 2.4.2.2 Optimizing the FSMD: Architectural Refinements Once the
algorithm is chosen, we look at optimizing its FSMD representation before
detailed hardware design.

m State Merging/Reduction:

m Concept: If two or more states in your FSMD perform identical
sets of operations on the datapath and have identical
transitions for all possible input conditions, they are considered
equivalent.

m Benefit: Merging equivalent states reduces the total number of
states in the FSM, which means fewer flip-flops for the state
register and simpler next-state and output logic, leading to
smaller area and potentially faster operation.

m Methods: Formal state minimization algorithms (e.g.,
implication table method, partitioning algorithm) can
systematically identify equivalent states.

m Re-timing (or Register Balancing):

m Concept: This technique involves moving registers across
combinational logic blocks to reduce the critical path delay,
thereby allowing for a higher clock frequency. If a
combinational path is too long, a register can be inserted in the
middle to break it into two shorter paths, increasing the clock
speed. Conversely, registers can sometimes be removed if
they are not strictly necessary for timing or functionality.

m Benefit: Improves maximum clock frequency (performance).

m Caution: Requires careful analysis to ensure functional
correctness and avoid introducing new hazards or violating
data dependencies. It changes the latency of the computation
(number of clock cycles).

m Considering Output Timing Changes: Any FSMD optimization must
be carefully checked for its impact on the timing of control signals and
data availability. A re-timed operation might output a result a cycle
later, which could break a dependency in another part of the system if
not accounted for.

o 2.4.2.3 Optimizing the Datapath: Resource Management Datapath
optimization focuses on efficient utilization of hardware resources.

m Resource Sharing (Time-Multiplexing):

m Concept: If an algorithm performs the same operation (e.g.,
addition) in different states or at different times, instead of
dedicating a separate adder for each instance, a single adder
can be shared among them. The controller then schedules and
routes data to this shared adder at the appropriate clock cycles
using multiplexers.

m Benefit: Reduces area (fewer functional units) and potentially
power (only one unit is active at a time).

o

Trade-off: Increases latency (more clock cycles might be
needed to complete the task because operations are
serialized), increases multiplexer complexity and propagation
delay through multiplexers.

Example (GCD): If we had multiple modulo operations in
different parts of a complex algorithm, we could use a single
modulo unit instead of one for each.

Register Sharing (Register Allocation):

Concept: If two or more variables in the algorithm have
non-overlapping lifetimes (meaning they are never needed
simultaneously), they can be assigned to the same physical
register in the datapath.

Benefit: Reduces the total number of registers, saving area
and power.

Method: Performed during the "register allocation" phase of
high-level synthesis, often using graph coloring algorithms.

Minimizing Multiplexer Inputs and Functional Units:

Every gate and wire in a multiplexer adds to area and delay. By
carefully structuring the datapath and minimizing the number of
sources that feed into a register or functional unit, you can
reduce the complexity of multiplexers.

Avoiding unnecessary or underutilized functional units also
contributes to area and power savings.

Pipelining:

Concept: Dividing a long combinational operation into smaller
stages, with registers placed between each stage. While a
single operation takes more clock cycles (increased latency),
multiple operations can be processed concurrently in different
pipeline stages, leading to significantly higher throughput.
Benefit: Dramatically increases throughput, allowing higher
data rates.

Trade-off: Increases latency, requires more registers (area),
and introduces pipeline hazards that need to be managed by
the controller.

2.4.2.4 Optimizing the Controller (FSM): Efficient Control Logic The
controller, though typically smaller than the datapath, is critical for
sequencing, and its optimization impacts overall system performance and

area.
|

State Minimization:

Concept: As mentioned, reducing the number of redundant
states in the FSM. Formal methods like the Partitioning
Algorithm or Implication Table Method are used to
systematically find and merge equivalent states.

Benefit: Fewer states mean fewer flip-flops for the state
register and simpler next-state and output combinational logic.
This translates to smaller area, potentially lower power, and
faster operation (due to reduced logic depth).

State Encoding:

Concept: Assigning unique binary codes to each state. The
choice of encoding scheme profoundly impacts the complexity
and speed of the controller's combinational logic.

Common Schemes:

m Binary Encoding (Minimum Bit Encoding): Uses the
fewest number of flip-flops (Iceillog_2Nrceil for N
states). While area-efficient for flip-flops, it can lead to
complex and slow next-state/output logic.

m One-Hot Encoding: Uses one flip-flop per state (N
flip-flops for N states). Only one flip-flop is active ('1') at
any given time. This typically results in much simpler
(often AND/OR gate based) next-state and output logic,
leading to faster operation and easier debugging,
despite using more flip-flops.

m Gray Code Encoding: Neighboring states differ by
only one bit. Can be useful in specific asynchronous
counter designs to avoid glitches, but less common for
general FSMs.

m Johnson Code (Twisted Ring Counter): Another
sequential encoding with good properties for certain
types of counters.

Choice: Often, one-hot encoding is preferred for
performance-critical controllers due to its simpler logic and
faster critical path, even if it uses more flip-flops.

Logic Minimization Techniques (for Next-State and Output Logic):
m After state encoding, the next-state and output functions are

expressed as sum-of-products or product-of-sums Boolean
equations.

Techniques like Karnaugh Maps (for small number of
variables) and advanced Boolean logic minimization
algorithms (e.g., Quine-McCluskey, Espresso heuristic
algorithms used by synthesis tools) are applied to find the
minimal set of logic gates to implement these functions.
Benefit: Reduces gate count (area), shortens critical paths
(speed), and reduces switching activity (power).

e 2.4.3 Power Optimization Techniques (Deeper Dive): Energy-Conscious Design
Given the criticality of power in embedded systems, a dedicated discussion is

warranted.

o Reducing Switching Activity (alpha):

Clock Gating: Disabling the clock signal to registers or entire
functional blocks when their outputs are not needed. If a register's
value isn't changing or being used, its clock can be temporarily halted,
preventing its flip-flops from consuming dynamic power. This is a very
common and effective technique.

Data Gating: Similar to clock gating, but involves using logic gates to
block data inputs to logic blocks when they are idle, preventing
unnecessary transitions from propagating.

o

m Minimizing Redundant Transitions: Design logic such that signals
only toggle when absolutely necessary.

m Glitch Reduction: Minimizing spurious signal transitions (glitches) in
combinational logic, which consume power even if they don't affect the
final output.

Voltage and Frequency Scaling (DVFS - Dynamic Voltage and Frequency
Scaling):

m Concept: Exploits the P_dynamicproptoV2 relationship. By
dynamically reducing the supply voltage (Vdd) and correspondingly
the clock frequency (as lower voltage implies slower operation),
significant power savings can be achieved during periods of low
workload. When higher performance is needed, voltage and frequency
are scaled up.

m Implementation: Requires power management units (PMUs) and
voltage regulators.

m Benefit: Large power savings, especially in battery-powered systems.

Power Gating:

m Concept: More aggressive than clock gating. Completely cuts off the
power supply (Vdd) to inactive blocks (power domains) using header
or footer switches (load transistors).

m Benefit: Eliminates both dynamic and static (leakage) power in the
gated blocks.

m Challenge: Introduces power-up/power-down sequences, which take
time and can cause voltage droops. Requires "state retention"
mechanisms for gated blocks that need to remember their state.

Low-Power Design Methodologies:

m Transistor Sizing: Choosing optimal transistor sizes to balance
performance, area, and power. Larger transistors are faster but
consume more power and area.

m Gate-Level Power Optimization: Using specialized low-power
standard cell libraries provided by fabrication foundries. These cells
are designed with different transistor characteristics (e.g., high-Vt
(threshold voltage) transistors for low leakage, but slower; low-Vt for
high performance, but higher leakage).

m Sleep Modes/Standby Modes: Designing the entire system to enter
various low-power states when idle, shutting down non-essential
components.

m Architectural Optimizations: Designing the high-level architecture
with power in mind, e.g., choosing parallel vs. serial processing based
on power budget, or using specialized accelerators.

	Embedded Systems: Week 2 - Designing Single Purpose Processors and Optimization
	Module 2.1: Introduction to Single-Purpose Processors
	Module 2.2: Designing Custom Single-Purpose Processors - The FSMD Approach
	Module 2.3: Implementation Details of Custom Single-Purpose Processors
	Module 2.4: Optimization Issues for Single-Purpose Processors

